
1

UNIT – 3

OPERATORS AND EXPRESSIONS

Lesson Structure

3.0 Objectives

3.1 Introduction

3.2 Arithmetic Operators

3.3 Relational Operators

3.4 Logical Operators

3.5 Assignment Operators

3.6 Increment and Decrement Operators

3.7 Conditional Operator

3.8 Bitwise Operators

3.9 Special Operators

3.10 Arithmetic Expressions

3.11 Evaluation of Expressions

3.12 Precedence of Arithmetic Operators

3.13 Type Conversions in Expressions

3.14 Operator Precedence and Associability

3.15 Mathematical Functions

3.16 Summary

3.17 Questions

3.18 Suggested Readings

3.0 Objectives

 After going through this unit you will be able to:

 Define and use different types of operators in Java programming
 Understand how to evaluate expressions?
 Understand the operator precedence and type conversion
 And write mathematical functions.

3.1 Introduction

 Java supports a rich set of operators. We have already used several of them, such as =,
+, –, and *. An operator is a symbol that tells the computer to perform certain mathematical or
logical manipulations. Operators are used in programs to manipulate data and variables. They
usually form a part of mathematical or logical expressions.

 Java operators can be classified into a number of related categories as below:

 1. Arithmetic operators

 2. Relational operators

2

 3. Logical operators

 4. Assignment operators

 5. Increment and decrement operators

 6. Conditional operators

 7. Bitwise operators

 8. Special operators

3.2 Arithmetic Operators

 Arithmetic operators are used to construct mathematical expressions as in algebra. Java
provides all the basic arithmetic operators. They are listed in Tabled 3.1. The operators +, –, *,
and / all works the same way as they do in other languages. These can on any built-in numeric
data type of Java. We cannot use these operators on Boolean type. The unary minus operator,
in effect, multiplies its single operand by –1. Therefore, a number preceded by a minus sign
changes its sign.

Table 3.1 Arithmetic Operators

Operator Meaning
+ Addition or unary plus

– Subtraction or unary minus

* Multiplication

/ Division

% Modulo division (Remainder)

 Arithmetic operators are used as shown below:

 a – b a + b

 a * b a / b

 a % b – a * b

 Here a and b may be variables or constants and are known as operands.

 Integer Arithmetic

 When both the operands in a single arithmetic expression such as a + b are integers, the
expression is called an integer expression, and the operation is called integer arithmetic. Integer
arithmetic always yields an integer value. In the above examples, if a and b are integers, then
for a = 14 and b = 4 we have the following results:

 a – b = 10

 a + b = 18

 a * b = 56

 a / b = 3 (decimal part truncated)

 a % b = 2 (remainder of integer division)

a/b, when a and b are integer types, gives the result of division of a by b after truncating the
divisor. This operation is called the integer division.

 For modulo division, the sign of the result is always the sign of the first operand (the
dividend). That is

 – 14 % 3 = – 2

 – 14 % – 3 = – 2

 14 % – 3 = 2

3

(Note that module division is defined as : a%b = a – (a/b)*b, where a/b is the integer division).

 Real Arithmetic

 An arithmetic operation involving only real operands is called real arithmetic. A real
operand may assume values either in decimal or exponential notation. Since floating point
values are rounded to the number of significant digits permissible, the final value is an
approximation of the correct result.

 Unlike C and C++, modulus operator % can be applied to the floating point data as
well. The floating point modulus operator returns the floating point equivalent of an integer
division. What this means is that the division is carried out with both floating point operands,
but the resulting divisor is treated as an integer, resulting in a floating point remainder. Program
3.1 shows how arithmetic operators work on floating point values.

Program 3.1 Floating point arithmetic

class FloatPoint

{

 public static void main(String args[])

 {

 float a = 20.5F. b = 6.4;

 System.out.println(“ a = ” + a);

 System.out.println(“ b = ” + b);

 System.out.println(“ a+b = ” + (a+b));

 System.out.println(“ a–b = ” + (a–b));

 System.out.println(“ a*b = ” + (a*b));

 System.out.println(“ a/b = ” + (a/b));

 System.out.println(“ a%b = ” + (a%b));

 }

}

 The output of Program 3.1 is as follows:

 a = 20.5

 b = 6.4

 a+b = 26.9

 a–b = 14.1

 a*b = 131.2

 a/b = 3.20313

 a%b = 1.3

 Mixed-mode Arithmetic

 When one of the operands is real and the other is integer, the expression is called a
mixed-mode arithmetic expression. If either operand is of the real type, then the other operand
is converted to real and the ral arithmetic is performed. The result will be a real. Thus

 15/10.0 produces the result 1.5

Whereas

 15/10 produces the result 1

 More about mixed operations will be discussed later when we deal with the evaluation
of expressions.

3.3 Relational Operators

4

 We often compare two quantities, and depending on their relation, take certain
decisions. For example, we may compare the age of two persons, or the price of two items, and
so on. These comparisons can be done with the help of relational operators. We have already
used the symbol ‘<’ meaning ‘less than’. An expression such as

 a < b or x < 20

containing a relational operator is termed as a relational expression. The value of relational
expression is either true or false. For example, if x = 10, then

 x < 20 is true

while

 20 < x is false.

 Java supports six relational operators in all. These operators and their meanings are
shown in Table 3.2

Table 3.2 Relational Operators

Operator Meaning
< is less than

<= is less than or equal to

> Is greater than

>= Is greater than or equal to

= = Is equal to

!= is not equal to

 A simple relational expression contains only one relational operator and is of the
following form:

ae–1 relational operator ae–2

 ae – 1 and ae – 2 are arithmetic expression, which may be simple constants, variables
or combination of them. Table 3.2 shows some examples of simple relational expressions and
their values.

Table 3.3 Relational Expressions

Expression Value
4.5 <= 10 TRUE

4.5 < –10 FALSE

– 35 >= 0 FALSE

10 < 7 + 5 TRUE

a + b = = c + d TRUE*

* Only if the sum of values of a and b is equal to the sum of values of c and d.

 When arithmetic expression are used on either side of a relational operator, the
arithmetic expressions will be evaluated first and then the results compared. That is, arithmetic
operators have a higher priority over relational operators. Program 3.2 shows the
implementation of relational operators.

Program 3.2 Implementation of relational operators

class RelationalOperators

{

 public static void main(String args[])

 {

 float a = 15.0F, b = 20.75F, c = 15.0F;

5

 System.out.println(“ a = ” + a);

 System.out.println(“ b = ” + b);

 System.out.println(“ c = ” + c);

 System.out.println(“ a < b is ” + (a<b));

 System.out.println(“ a > b is ” + (a>b));

 System.out.println(“ a == c is ” + (a==c));

 System.out.println(“ a <= c is ” + (a<=c));

 System.out.println(“ a >= b is ” + (a>=b));

 System.out.println(“ b != c is ” + (b!=c));

 System.out.println(“ b == a+c is ” + (b==a+c));

 }

}

 The output of Program 5.2 would be:

 a = 15

 b = 20.75

 c = 15

 a < b is true

 a > b is false

 a == c is true

 a <= c is true

 a >= b is false

 a != c is true

 b == a+c is false

 Relational expressions are used in decision statements such as, if and while to decide
the course of action of a running program. Decision statements are discussed in detail in
Chapters 6 and 7.

3.4 Logical Operators

 In addition to the relational operators, Java has three logical operators, which are given
in Table 3.4.

Table 3.4 Logical Operators

Operator Meaning
 && logical AND

 | | logical OR

 ! logical NOT

 The logical operators && and | | are used when we want to form compound conditions
by combining two or more relations. An example is:

 a > b && x == 10

 An expression of this kind which combines two or more relational expressions is termed
as a logical expression or a compound relational expression. Like the simple relational
expressions, a logical expression also yields a value of true or false, according to the truth table
shown in Table 3.5. The logical expression is given above is true only if both a > b and x = 10
are true. If either (or both) of them are false the expression is false.

Table 3.5 Truth Table

op – 1 op – 2 Value of the expression

6

op – 1 && op – 2 op – 1 | | op – 2
true true true true

true false false true

false true false true

false false false false

 Note:

 op – 1 && op – 2 is true if both op – 1 and op – 2 are true and false otherwise.
 op – 1 | | op – 2 is false if both op – 1 and op – 2 are false and true otherwise.

 Some examples of the usage of logical expression are:

1. if (age>55 && salary<1000)
2. if (number<0) || number>1000)

3.5 Assignment Operators

 Assignment operators are used to assign the value of an expression to a variable. We
have seen the usual assignment operator, ‘=’. In addition, Java has a set of ‘shorthand’
assignment operators which are used in the form

v op= exp;

where v is a variable, exp is an expression and op is a Java binary operatory. The operator
op = is known as the shorthand assignment operator.

The assignment statement

 v op= exp;

is equivalent to

 v = v op(exp);

with v accessed only once. Consider an example

 x += y+1;

This is same as the statement

 x = x+(y+1);

 The shorthand operator += means ‘add y + 1 to x’ or ‘increment x by y + 1’. For y = 2,
the above statement becomes

 x += 3;

and when this statement is executed, 3 is added to x. If the old value of x is, say 5, then the
value of x is 8. Some of the commonly used shorthand assignment operators are illustrated in
Table 3.6.

Table 3.6 Shorthand Assignment Operators

Statement with simple
assignment operator

Statement with
shorthand operator

 a = a+1 a += 1

 a = a–1 a –= 1

 a = a*(n+1) a *= n+1

 a = a/(n+1) a /= n+1

 a = a%b a %= b

 The use of shorthand assignment operators has three advantages:

 1. What appears on the left-hand side need not be repeated and therefore it becomes
easier to write.

 2. The statement is more concise and easier to read.

7

 3. Use of shorthand operator results in a more efficient code.

3.6 Increment and Decrement Operators

 Java has two very useful operators not generally found in many other languages. These
are the increment and decrement operators.

 ++ and ––

 The operator ++ adds 1 to the operand while –– subtracts 1. Both are unary operators
and are used in the following form:

 ++m; or m++;

 ––m; or m––;

 ++m; is equivalent to m = m + 1; (or m += 1;)

 ––m; is equivalent to m = m – 1; (or m –= 1;)

 We use the increment and decrement operators extensively in for and while loops.

 While ++m and m++ mean the same thing when they from statements independently,
they behave differently when they are used in expressions on the right-hand side of an
assignment statement. Consider the following:

 m = 5;

 y = ++m;

In this case, the value of y and m would be 6. Suppose, if we rewrite the above statement as

 m = 5;

 y = m++;

then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to the operand
and then the result is assigned to the variable on left. On the other hand, a postfix operator first
assigns the value to the variable on left and then increments the operand. Program 3.3 illustrates
this.

Program 3.3 Increment Operator Illustrated

class IncrementOperator

{

 public static void main(String args[])

 {

 int m = 10, n = 20

 System.out.println(“ m = ” + m);

 System.out.println(“ n = ” + n);

 System.out.println(“ ++m = ” +++m n);

 System.out.println(“ n++ = ” + n++);

 System.out.println(“ m = ” + m);

 System.out.println(“ n = ” + n);

 }

}

 Output of Program 3.3 is as follows:

 m = 10

 n = 20

 ++m = 11

 n++ = 20

 m = 11

 n = 21

8

 Similar is the case, when we use ++ (or ––) in subscripted variables. That is, the
statement

 a[i++] = 10

is equivalent to

 a[i] = 10

 i = i+1

5.7 Conditional Operator

 The character pair ? : is a ternary operatory available in Java. This operator is used to
construct conditional expressions of the form

exp1 ? exp2 : exp3

where exp1, exp2, and exp3 are expressions.

 The operator ? : works as follows: exp1 is evaluated first. If it is nonzero (true), then
the expression exp2 is evaluated and becomes the value of the conditional expression. If exp1
is false, exp3 is evaluated and its value becomes the value of the conditional expression. None
that only one of the expressions (either exp2 or exp3) is evaluated. For example, consider the
following statements:

 a = 10;

 b = 15;

 x = (a > b) ? a : b;

 In this example, x will be assigned the value of b. This can be achieved using the
if….else statement as follows:

 if(a > b)

 x = a;

 else

 x = b;

3.8 Bitwise Operators

 Java has a distinction of supporting special operators known as bitwise operators for
manipulation of data at values of bit level. These operators are used for testing the bits, or
shifting them to the right or left. Bitwise operators may not be applied to float or double. Table
3.7 lists the bitwise operators. They are discussed in detail in Appendix D.

Table 3.7 Bitwise Operators

Operator Meaning
& bitwise AND

! bitwise OR

^ Bitwise exclusive OR

~ one’s complement

<< shift left

>> shift right

>>> shift right with zero fill

3.9 Special Operators

 Java supports some special operators of interest such as instanceof operatory and
member selection operator (.).

 Instaceof Operator

9

 The instanceof is an object operator and returns true of the object on the left-hand side
is an instance of the class given on the right-hand side. This operator allows us to determine
whether the object belongs to a particular class or not.

Example:

 person instanceof student

is true if the object person belongs to the class student; otherwise it is false.

 Dot Operator

 The dot operator (.) is used to access the instance variables and methods of class objects.
Examples:

 personal.age / / Reference to the variable age

 personal.salary / / Reference to the method salary()

 It is also used to access classes and sub-packages from a package.

3.10 Arithmetic Expressions

 An arithmetic expression is a combination of variables, constants, and operators
arranged as per the syntax of the language. We have used a number of simple expression in the
examples discussed so far. Java can handle any complex mathematical expressions. Some of
the examples of Java expressions are shown in Table 3.8. Remember that Java does not have
an operator for exponentiation.

Table 3.8 Expressions

Algebraic expression Java expression
a b–c a*b–c

(m+n)(x+y) (m+n)*(x+y)

ab

c
 a*b/c

3x2+2x+1 3*x*x+2*x+1
x

y
+c x/y+c

3.11 Evaluation of Expressions

 Expressions are evaluated using an assignment statement of the form

variable = expressions;

variable is any valid Java variable name. When the statement is encountered, the expression is
evaluated first and the result then replaces the previous value of the variable on the left-hand
side. All variables used in the expression must be assigned value before evaluation is attempted.
Examples of evaluation statements are

 x = a*b–c;

 y = b/c*a;

 z = a–b/c+d;

 The blank space around an operator is optional and is added only to improve readability.
When these statements are used in program, the variables a,b,c and d must be defined before
they are used in the expressions.

3.12 Precedence of Arithmetic Operators

10

 An arithmetic expression without any parentheses will be evaluated from left to right
using the rules of precedence of operators. There are two distinct priority levels of arithmetic
operators in Java:

 The basic evaluation procedure includes two left-to-right passed through the
expression. During the first pass, the high priority operators (if any) are applied as they are
encountered.

 High priority * / %

 Low priority + –

 During the second pass, the low priority operators (if any) are applied as they are
encountered. Consider the following evaluation statement:

 x = a–b/3 + c*2–1

 When a = 9, b = 12, and c = 3, the statement becomes

 x = 9–12/3+3*2–1

 and is evaluated as follows:

 First pass

 Step1: x = 9–4+3*2–1 (12/3 evaluated)

 Step2: x = 9–4+6–1 (3*2 evaluated)

 Second pass

 Step3: x = 5+6–1 (9–4 evaluated)

 Step4: x = 11–1 (5+6 evaluated)

 Step5: x = 10 (11–1 evaluated)

 However, the order of evaluation can be changed by introducing parentheses into an
expression. Consider the same expression with parentheses as shown below:

 9–12/(3+3)*(2–1)

 Whenever the parentheses are used, the expressions within parentheses assume highest
priority. If two or more sets of parentheses appear one after another as shown above, the
expression contained in the left-most set is evaluated first and the right-most in the last. Given
below are the new steps.

 First pass

 Step1: 9–12/6*(2–1)

 Step2: 9–12/6*1

 Second pass

 Step3: 9–2*1

 Step4: 9–2

 Third pass

 Step5: 7

 This time, the procedure consists of three left-to-right passes. However, the number of
evaluation steps remain the same as 5 (i.e., equal to the number of arithmetic operators).

 Parentheses may be nested, and in such cases, evaluation of the expression will proceed
outward from the innermost set of parentheses. Just make sure that every parentheses has a
matching closing one. For example

 9–(12/3(3+3)*2)–1 = 4

Whereas

 9–((12/3)+3*2)–1 = –2

11

 While parentheses allow is to change the order of priority, we may also use them to
improve understandability of the program. When in doubt, we can always add an extra pair just
to make sure that the priority assumed is the one we require.

3.13 Type Conversions in Expressions

 Automatic Type Conversion

 Java permits mixing of constant and variables of different types in an expression, but
during evaluation it adheres to very strict rules of type conversion. We know that the computer,
considers one operator at a time, involving two operands are of different types, the ‘lower’ type
is automatically converted to the ‘higher’ type before the operation proceeds. The result is of
the higher type.

 If byte, short and int variables are used in an expression, the result is always promoted
to int, to avoid overflow. If a single long is used in the expression, the whole expression is
promoted to long. Remember that all integer values are considered to be int unless they have
the 1 or L appended to them. If an expression contains a float operand, the entire expression is
promoted to float. If any operand is double, result is double. Table 5.9 provides a reference
chart for type conversion.

Table 3.9 Automatic Type Conversion Chart

 char byte short int long float double
char int int int int long float double
byte int int int int long float double
short int int int int long float double
int int int int int long float double
long long long long long long float double
float float float float float float float double
double double double double double double double double

 The final result of an expression is converted to the type of the variable on the left of
the assignment sign before assigning the value to it. However, the following changes are
introduced during the final assignment.

 1. float to int causes truncation of the fractional part.

 2. double to float causes rounding of digits.

 3. long to int causes dropping of the excess higher order bits.

 Casting a Value

 We have already discussed how Java performs type conversion automatically.
However, there are instances when we want to force a type conversion in a way that is different
from the automatic conversion. Consider, for example, the calculation of ration of females to
males in a town.

 ratio = female_number/male_number

 Since female_number and male_number are declared as integers in the program, the
decimal part of the result of the division would be lost and ratio would not represent a correct
figure. This problem can be solved by converting locally one of the variables to the floating
point as shown below:

 ratio = (float)female_number/male_number

 The operator (float) converts the female_number to floating point for the purpose of
evaluation of the expression. Then using the rule of automatic conversion, the division is
performed in floating point mode, thus retaining the fractional part of result.

 Note that in no way does the operator (float) affect the value of the variable
female_number. And also, the type of female_number remains as int in the other parts of the
program.

12

 The process of such a local conversion is known as casting a value. The general form
of a cast is:

(type_name) expression

where type-name is one of the standard data types. The expression may be a constant, variable
or an expression. Some examples of casts and their actions are shown in Table 3.10.

Examples Action

x = (int) 7.5 7.5 is converted to integer by
truncation

a = (int)21.3/(int)4.5
Evaluated as 21/4 and the result
would be 5

b = (double) sum/n Division is done in floating
point mode.

y = (int) (a+b) The result of a + b is converted
to integer.

z = (int) a+b
a is converted to integer and
then added to b.

p = cost (double)x) Converts x to double before using
it as parameter.

 Casting can be used to round-off a given value to an integer. Consider the following
statement:

 x = (int) (y+0.5);

If y is 27.6, y + 0.5 is 28.1 an on casting, the result becomes 28, the value that is assigned to x.
Of course, the expression being cast is not changed.

 When combining two different types of variables in an expression, never assume the
rules of automatic conversion. It is always a good practice to explicitly force the conversion. It
is more safer. For example, whey y and p are double and m is int, the following two statements
are equivalent.

 y = p+m;

 y = p+(double)m;

 However, the second statement is preferable.

 Program 3.4 illustrates the use of casting in evaluating the equation

 sum =

n

1i i

1

Program 3.4 Illustration of used of casting operation

class Casting

{

 public static void main(String args[])

 {

 float sum;

 int i;

 sum = 0.0F;

 for(i = 1; i <= 10; i++)

 {

 sum = sum + 1/(float)i;

 System/out.print(“ i = ” + i);

 System.out.print(“ sum = ” + sum);

 }

13

 }

}

 Program 5.4 produces the following output:

 i = 1 sum = 1

 i = 2 sum = 1.5

 i = 3 sum = 1.83333

 i = 4 sum = 2.08333

 i = 5 sum = 2.28333

 i = 6 sum = 2.45

 i = 7 sum = 2.59286

 i = 8 sum = 2.71786

 i = 9 sum = 2.82897

 i = 10 sum = 2.92897

 Generic Type Casting

 Generics is one of the significant enhancements to Java by J2SE 5.0 programming
language. Generics eliminates the need of explicit type casting in collections. A collection is a
set of interfaces and classes that sort and manipulate a group of data into a single unit.

 To retrieve elements from a collection, we need to typecast the elements, because each
element in a collection is considered to be an object. Also, typecasting is an unsafe operation
because the compiler cannot check the wrong casts. The compiler throws an exception if the
casts fail at runtime. When using generics, the compiler inserts type casts at appropriate places
to implement type casting. Therefore, the typecast becomes implicit rather than explicit.
Generics also determines the typecast errors at compile time rather than run time. Now,
collection can contain objects of only one type. Using Generics, we can specify the type
information of data using a parameter. The type information specifies the class and hierarchy
of classes and interfaces to which the object belongs. The syntax to declare a generic class is:

 class SampleGenericClass <T>

 {

 }

 Here <T> indicates that the xampleGenericClass class is of generic type. Program 3.5
illustrates the use of generic type in the ArryList collection.

Program 3.5 Illustration of use of generic type in collections

Operator Description Associativity Rank
 Member selection Left to right 1
() Function call
[] Array element reference
– Unary minus Right to left 2
++ Increment
–– Decrement
! Logical negation
~ Ones complement
(type) Casting
* Multiplication Left to right 3
/ Division
% Modulus
+ Addition Left to right 4
– Subtraction
<< Left shift Left to right 5
>> Right shift
>>> Right shift with zero fill

14

< Less than Left to right 6
<= Less than or equal to
> Greater than
>= Greater than or equal to
instanceOf Type comparison
== Equality Lift to right 7
!= Inequality
& Bitwise AND Left to right 8
^ Bitwise XOR Lieft to right 9
| Bitwise OR Left to right 10
&& Logical And Left to right 11
|| Logical OR Left to right 12
?: Conditional operator Right to left 13
= Assignment operators Right to left 14
op= Shorthand assignment

Program 3.3 produces the following output:

 The total Amount is 3

3.14 Operator Precedence and Associativity

 Each operator in Java has a precedence associated with it. This precedence is used to
determine how an expression involving more than one operator is evaluated. There are distinct
levels of precedence and an operator may belong to one of the levels. The operators at the
higher level of precedence are evaluated first. The operators of the same precedence are
evaluated either from left to right or from right to left, depending on the level. This is known
as the associativity property of an operator. Table 3.11 provides a complete lists of operators,
their precedence levels, and their rules of association. The groups are listed in the order of
decreasing precedence (rank 1 indicates the highest precedence level and 14 the lowest). The
list also includes those operators which we have not yet discussed.

Table 3.11 Summary of Java Operators

Operator Description Associativity Rank

()
[]

Member selection
Function call
Array element reference

Left to right 1

-
++
––
!
~
(type)

Unary minus
Increment
Decrement
Logical negation
Ones complement
Casting

Right to left 2

*
/
%

Multiplication
Division
Modulus

Left to right 3

+
–

Addition
Moduls

Left to right 4

<<
>>
>>>

Left shift
Right shift
Right shift with zero fill

Left to right 5

<
<=
>
>=
Instanceof

Less than
Less than or equal to
Greater than
Greater than or equal to
Type comparison

Left to right 6

==
!=

Equality
Inequality

Left to right 7

&
^
|
$$
?:
=

Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional operator

Left to right
Left to right
Left to right
Left to right
Right to lect
Right to Left

8
9
10
11
12
13

15

Op= Assignment operators
Sorthand assignment

14

 It is very important to note carefully, the order of precedence and associativity of
operators. Consider the following conditional statement:

 if(x == 10+15 && y<10)

 The precedence rules say that the addition operator has a higher priority than the logical
operator (&&) and the relational operator (== and <). Therefore, the addition of 10 and 15 is
executed first. This is equivalent to:

 if(x == 25 &&y<10)

 The next step is to determine whether x is equal to 25 and y is less than 10. If we assume
a value fo 20 for x and 5 for y, then

 x == 25 is FALSE

 y < 10 is TRUE

 Note that since the operator < enjoys a higher priority compared to ==, y<10 is tested
first and then x = = 25 is tested.

 Finally we get:

 if(FALSE && TRUE)

 Because one of the conditions FALSE, the compound condition if FALSE.

3.15 Mathematical Functions

 Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of
real-life problems. Java supports these basic math functions through Math class defined in the
java.lang package. Table 3.12 lists the math functions defined in the Math class. These
functions should be used as follows:

 Math.function_name()

Example:

 double y = Math.sqrt(x);

Functions Action

sin(x) Returns the sine of the angle x in radians

cos(x) Returns the cosine of the angle x in radians

tan(x) Returns the tangent of the angle x in radians

asin(y) Returns the angles whose sine is y

acos(y) Returns the angle whose cosine is y

atan(y) Returns the angle whose tangent is y

atan2(x,y) Returns the angle whose tangent is x/y

pow(x,y) Returns x raised to y (xy)

exp(x) Returns e raised to x (ex)

log(x) Returns the natural logarithm of x

sqrt(x) Returns the square root of x

ceil(x)
Returns the smallest whole number greater than or

equal to x. (Rounding up)

floor(x)
Returns the largest whole number less than or

equal to x (Rounded down)

16

rint(x) Returns the truncated value of x.

round(x) Returns the integer closest to the argument

abs(a) Returns the absolute value of a

max(a,b) Returns the maximum of a and b

min(a,b) Returns the minimum of a and b

Note : x and y are double type parameters a and b may be ints, longs, floats and doubles.

3.16 Summary

 In this unit we have discussed all the basic data type and operators available in Java and
also seen their use in expressions. Type conversions and order of precedence of operators
during the evaluation of expressions have been highlighted. Program 3.6 winds up our
discussion by demonstrating the use of different types of expressions.

 Finally, it is important to note that all Java types fixed sizes. There is no ambiguity and
all Java types are machine-independent.

3.17 Questions

 1. Which of the following arithmetic expressions are valid?

 (a) 25/3 % 2 (b) +9/4 + 5

 (c) 7.5 % 3 (d) 14 % 3 + 7 % 2

 (e) – 14 % 3 (f) 15.25 + – 5.0

 (g) (5/3) * 3 + 5 % 5 (h) 21 % (int)4.5

 2. Write Java assignment statements to evaluate the following equations:

 (a) Area = πr2 + 2πrh

 (b) Torque = g*
2m1m

2m1m2

 (c) Side =)xcos(ab2ba 22

 (d) Energy = mass

2

velocity
height*onacceleratimass

2

 3. Determine the value of each of the following logical expressions if a = 5, b = 10
and c = – 6

 (a) a > b && a < c

 (b) a < b && a > c

 (c) a == c || b > a

 (d) b > 15 && c < 0 || a > 0

 (e) (a/2.0 == 0.0 && b/2.0! = 0.0) || c < 0.0

4. The total distance travelled by a vehicle in t seconds is given by

 distance = ut + (at2)/2

 where u is the initial velocity (metres per second), a is the acceleration (metres per
second)2. Write a program to evaluate the distance travelled at regular intervals of
time, given the values of u and a. The program should provide the flexibility to the
user to select his own time intervals and repeat the calculations for different values
of u and a.

17

 5. For certain electrical circuit with an inductance L and resistance R, the damped
natural frequency is given by

 Frequency
2

2

C4

R

LC

1

 It is desired to study the variation of this frequency with C (capacitance). Write a
program to calculate the frequency for different values of C starting from 0.01 to
0.1 steps of 0.01.

3.18 Suggested Readings

 1. E. Balaguruswammy , Programming in Java, A primer 3e, Tata Mcgraw Hill, New
Delhi.

