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First Law of Thermodynamics

As we know about it, the assumption in TD is that there are only a few
numbers of macroscopic variables for a complete description of a state of a
system. Definitions of physical state functions of these variables, the con-
straints of and relations between these state functions are the main subject
of thermodynamics.

The main mathematics in TD: functions of many wvariables and their
(partial) derivatives.

1st law: In an arbitrary TD transformation, let ) — net amount of heat
absorbed by the system, and W = net amount ol work done on the systerm.
The 1st law states

AE =Q+ W (1)

15 Lhe same for all transformations leading form a given immitial state to a final
state (Joule’s law), where £ is the total energy (or internal energy, or just
energy) of the TD system. Clearly, F, Q) and W are all measured in energy
unit (SI: Joule).

Mancunian James Joule (born Salford 1818, died Sale 1889, brewer and
physicist) did many experiments in the 1840°s to establish the equivalence of
heat and work as forms of energy.

Please note: (a) Thermally isolated system: contained within adiabatic
(perfectly insulated) walls. we have

Q=0 AFE=W.



For mechanically isolated system: W = (. Hence AF = (), all heat turns to
internal energy. (b) Internal energy I is a function of state, a macroscopic
variable, but has its origin of in microscopic constituents. In general, it is
simply the sum of the kinetic energies of the molecules of the system and
potential energy arising from the interaction force between them.

The first law of thermodynamics 1s a statement of energy conservation
and defines the internal energy £ as an extensive state function. In an
infinitesimal transformation, the first law reduces to

dE =dQ +daw (2)

where dF is a total (exact) differential for infinitesimal transformation. How-
ever, dQ) and dW are not exact (@ and W are not state functions); @) and W
in a thermodynamics transformation are process-dependent. All these are
properties of functions of more than one variables.

Since Y 1s a state function, it depends on the TD parameters, say P, V),
and I, Since the equation of state can be made to determine one of these 1n
terms of other two, we have, for a gas,

E=E(P,V)=E(\V,T)= E(T,P) .



Hence

OE OE
dE — dP dv .
(E}IJ)V N (av)f—"

Two other similar equations can be written.
Consider a gas. In an infinitesimal, reversible transformation, for which
work done by the gas dWW = — PdV | the heat

dQ = dE + PdV. (3)

By the definition of heat capacity at constant V',

(dQ OF
o= (ar), - (or), ®

and similarly, the heat capacity at constant pressure, using Eq. (3)

~(dQ\  (OE av
or=(ar),~ (r),+ 7 (5r), “”

The difference between Cy and Cp clearly shows d( 1s not exact, but depends
on the details of the path, namely, heat €0 1s not a state unction.

Note: Many authors use dW (= PdV) to mean the work done by the
system. We use dW = — PdV to mean work done on the system and lower
case dw = —dW = PdV to mean work done by the system.

Example: Consider 2 different ways of taking a fixed mass of an ideal gas
from an initial state (V, Ty) to a final state (2V5, Th): (a) Free expansion in

a container with adiabatic walls as shown in the top of Fig. 1 Clearly @@ = 0
and W = (). We have

AFE = 0.



For ideal gas, It = F(7T) (more discussion of this equation later). Hence
T = Th = const. (b) Expansion against an external force, with T held fixed
at Ty by contact with a heat bath as shown in the bottom two diagrams of
Fig. 1. In this case, work is done by the gas.
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Fig. 1 (a) Free expansion (top two diagrams). (b) Expansion
against an external force (bottom two diagrams).




As AF = 0, we have

Q= —-W =0, W=—de:r:::D-

Conclusion of these two examples are: () and W are not state function but
sum of them F is.

1.3 Real and Ideal gases: A Review

All gases which cannot be easily liquefied are found experimentally obey the
following two laws:
(a) Boyles’s law

PV = const. at fixed temperature.



(b) Charles’s law (Gay-Lussac’s law): At constant pressure, the volume of
a gas varies linearly with temperature, say # on some arbitrary scale, e.g.,
Centigrade,

140
w=1—f;,( - ) at fixed P — P,

.r!h
where Ty 1s constant (experiments show 7Ty nearly same for all gases. If both
laws are obeved exactly

14+0 T
PV:%%( ):&%—
0 To
where T" = # + Ty 1s temperature on an absolute scale. As P and T are
imtensive, and V' is extensive
PV
o< N
|'-'IT
or, the ideal gas law
PV = NkpT = nRT (6)
where kp i1s the DBoltzmann constant, K = kp /N, i1s universal gas constant,

N, is Avogadro’s number, n = N/N 4 is number of mole. For the case of real
gases, only the limit as P — () does the equation of state assume the above
form.



Later in Statistical Physics, we can understand i1deal gas microscopically
as a gas with point-like, non-interacting molecules. All gases tend to that of
an ideal gas at low cnough pressure. The noble gas (e.g., helium, argon) are
very close to ideal at STP; even our air at STP 1s gquite well approximated
as 1deal.

For real gas in general, the internal energy F = E(T, P) = E(T,V). For
an ideal gas, this simplifies to E = FE(71), as a function of T only, as we see
below. By definition, the ideal gas satisfies the equation

PV =nRI, E = E(I') forideal gas. (7)

Notice that for ideal gas

IFE Al
(50), 0 (ov),~°

From Eq. (4), for ideal gas,

dE _
Cyv — 2= dE — CvdT. 8
Vi ar v (8)



In general, heat capacity may change with 7. DBut if 'y =constant, I¥ =
Cyv'T, aftter we define zwero of energy as ' =0 at T = 0.

The result of statistical mechanics (kinetic theory) show that for an ideal
gas,

E— Igmc,;T — ?nR‘T (9)

where v 1s the active degrees of freedom. The above equation states that each
molecule has an average internal energy of %kf}T per active degree of freedom.
(i) Monatomic gases, vy = 3; (ii) diatomic gases, vy = 5 (3 translational and
2 rotational; vibrational modes are frozen out).
We can also prove
Cp — Cy = nhl; (10)

for ideal gas. And for reversible adiabatic process on an ideal gas

Cp
Cyv

PV7 = const., = (11)
For a monatomic ideal gas, v = 5/3; for diatomic ideal gas,
v = T/5.
Now we consider real gases. Many attempts exist to modify the ideal gas
equation of state for real gases. T'wo common ones are:
(a) The hard-sphere gas: we continue to neglect the interaction except at
short range where we treat the molecules as hard spheres

oo, for v << rg; ‘
Vir) = {U? for r = rg. (12)



Most of the ideal gas results continue to hold except V' — V' — nb, where b
15 the "excluded volume”, proportional to the volume occupied by 1 mole of
gas (i.e., b oc Nyrg. The equation of state for a hard sphere gas becomes

P(V —nb) =nRT, or P(V - Ng)= NkpT, 3= i

Na
(b) The van der Waals gas. Apart from the hard-sphere interaction at short
distance, we now allow the weak intermolecular attraction at larger distances,
as shown in Fig. 2. The extra attraction for r = ry clearly reduces the pres-
sure for a given V' and T, since a molecule striking the vessel wall experiences

an additional inward pull on this account. Call this intrinsic pressure 7. So

if the observed pressure 1s P and that expected if there were no attraction is
p, p — P = m, the hard-sphere equation of state

nRT nRT
P=_— P = =
V—_nb +r V —nb
Van der Waals argued that 7 1s the result of mutual attraction between bulk
of gas, 1.e., the tendency ol molecules [orming pairs, and hence should be
proportional to N(N — 1)/2 oc N?, or to N?/V? as it is intensive. Hence
7w = an®/V?=,



had

Fig. 2 A schematic diagram for the interaction potential be-

tween two molecules.

The equation of state for van der Waals gas 1s

(P +alo)(V — nb) — nRT
Vﬂ

or ‘
a N2

V2
where 3 = b/N4 and o = a/N7.

(4

)(V — NB) = NkgT,

(13)



