UNIT 1 Introducing of WindowsForms

Structure Page Nos.
1.0 Objectives

1.1 Introduction

1.2 Creating a Windows Forms Application
1.3 Implementing Class Library Object

1.4 VDb.Net implementation of Inheritances
1.5 Namespaces

1.6 Summary

1.7 Questions for Exercise

1.8 Suggested Readings

1.0 Objective:
Create Windows Forms applications.
Use common Windows Forms controls such as laleedsbbxes, and buttons.

Change the properties of Windows Forms and contabldesign
time and programmatically at run time.

Subscribe to and process events exposed by Windomss and controls.

1.1 Introduction:

In this unit you will learn how to create windowsn in vb.net, uses of different
windows controls on the form, setting their prdigsrand handling the events of the
form controls. , all these controls are basicalfyraphical object. These graphics

objects help the user to interact with an applacatn a friendly way You will learn

about the creation of class library, implementatbmheritance and the uses of

namespaces

Creating a Windows Forms Application
In this exercise, you'll start building the Middlese Bell Ringers Association
application by creating a new project, laying dw¢ form, and adding Windows
Forms controls to the form. Because you have besmguexisting Windows
Forms applications in Microsoft Visual Studio 20@5previous chapters, much

of the first couple of exercises will be a review you.

Start Visual Studio 2005.

On the File menu, point to New, and then click Ectj
In the Project Types pane, select Visual C#.

In the Templates pane, select Windows Application.

In the Name text box, tymdhare market.

o o M w0 N P

In the Location list box, navigate to the Microsefess\Visual
CSharp Step by Step\

7. Click OK.
The new project is created and contains a blank falledForm1

20 BellRingers - Microsoft ¥isual Studio 3 (=] |
Fle Edit View Project Buld Debug Data Jools Window Community Help
(- | % B9 -F-B | b oDebug ~ Any CPU - [
PE |2 & S| ek o | 560 NN e i 2| 2 &7 2 e Find n Files (Cirl+Shift+F)
— = 5 jers - X
¥ Form1.cs [Design] | Start Page | > x B gers 12
&
3 E
g =lolx] 7] solion Bellingers' (1 project)
E
B2 B (1 BellRingers
4 Properties
[References
[E] Forml.cs
4 Program.cs
BellRingers Project Propertiss
=]
e =
Project File BelRingers.cspraj
] Frojsct Folder Cr\Documents and Settings,
Policy File
The policy actions file.
Ready A

Set the properties of the form

1.

Select the form in the Designer View window. In tReoperties
window, click the(Name)property, and then typdemberForm in the

(Name) text box to change the name of the formitH# Properties
window is not displayed, click Properties Window thie View menu,
or press F4.)

In the Properties window, click thBextproperty, and then typghare

mark et, to change the text in the title bar of the form

In the Properties window, click tligackgroundimageroperty, and
then click the Ellipses button in the adjacent te.

The Select Resource dialog box opens.

In the Select Resource dialog box, click Local vrese and then

click Import. The Open dialog box opens.

In the Open dialog box, navigate to the My Docutadalder, select
the image.qif file, and then click Open.

10.

Part of the image will be displayed in the Selees®&urce dialog box.
6. In the Select Resource dialog box, click OK.
TheBackgroundimageroperty is now set to the image.

7. In the Properties window, click tigackColorproperty, and then click

the down-arrow button in the adjacent text box.

A dialog box opens.

Custom | Web | System

I HotTrack ~
[InactiveBorder

[InactiveCaption
[InactiveCaptionText
[info

I InfoText

1 Menu

[MenuBar

[MenuHighlight:

I MenuText

1 ScrollBar

I indowFrame
findow Text

On the System tab of the dialog box, click Winddwis value sets
the background color of all the controls that yoopdonto the form to
the same color as the window itself.

Select theFont property. This is a composite property that hasyman
attributes. In the Properties window, click theshign (+) to expand
the Font property and display the attributes. Typ2 for the Size
attribute of the font, and set tB®ld attribute toTrue

Change the form’Sizeproperty, which is also a composite property. In
the Properties window, click the plus sign (+) tgpand theSize
property and display the attributes. Set the Watthibute to 600 and

the Height attribute to 470.

TOtS

The form should look like the image in the followigraphic

Fle Edt View Project Buld Desbug Data Formak Tooks Window Communty Help

A - E @ % R 9 - -5 b Debug - Any CPU
B b 8 |2 e 2 B [40 B et | T %
_~Form1.cs [Design]* | Start Page | - X

SR ERR
[Solution ‘BelRingsrs' (1 project
E- (Z] BellRingers
54 Properties

|xeqie0L 3¢

Middleshire Bell Ringers Association - Members

[53] References
&] Forml.cs
i %) Form1.Designer.cs
%) Formt.resx
] Program.cs

Form1 System Windows Forms. +

8 A=
Showlcon True ot
ShowInTaskb. True

E Size 600, 470

Width 600 =

Height 470

Width

4 : | f

Ready

On the Build menu, click Build Solution. The forhauld build successfully.
11. On the Debug menu, click Start Without Debugging.

The application will start running and will displélye main form containing the image.
The form does not do anything useful yet, so clbaad return to Visual Studio.

If you look closely at the Properties window whefoan is selected, you can
see that there are over fifty properties availaBleme of them are fairly
obvious; for example, the Text property that cqrogsls to the text displayed
in the form’s title bar. Some properties are usafder certain circumstances;
for example, you can remove the Minimize, Maximiae¢g Close but- tons, or
remove the System menu from the title bar of a foynsetting th&ControlBox
prop- erty toFalse—useful if you want to ensure users cannot closddima
unless they execute some code that closes it @ipli©ther properties apply
to very specific circumstances; for example, @uacity property can be used
to control the level of transparency of the forrheTollowing table describes

some of the common form properties that you camgéat design time. You

should also be aware that there are additional gotigs not listed in the

Properties window that you can use only prograncaly at run time. For

example, theActiveControl property shows which control in the form

currently has the foeu

$
(Name) The name of the form. Two forms in the same projecinot
have the same name.
BackColor The default background color of any text and grepim the form.

Backgroundimag@e bitmap, icon, or other graphic file to be usecgdmackdrop

to the form. If the image is smaller than the foitroan be tiled

to fill the form, stretched, centered, or zoomedusyng the
BackgroundimageLayoptoperty.

Font The default font used by the controls embeddedhefdrm
that display text. This is a compound property—gan set
many attributes of the font including the font nasiee, and
whether the font appearsiitalic, bold, or undedine

ForeColor The default foreground color of any text and graplm the form.

FormBorderStyleThis controls the appearance and type of bordéedbrm. The

default set- ting is Sizable. Other options spebifyders that
are not resizable or do not have the various Systemu
buttons.

Icon This specifies the icon that appears in the folgystem menu
and on the Mi- crosoft Windows taskbar. You caratze/our
own icons by using Visual Stu- dio 2005.

Location This is another compound property that specifiee th

coordinates of the top left corner of the form witkpect to its
container, which might be another form or the scree

MaximizeBox

This property specifies whether the Maximize comdamthe

MaximumSize

System menu and caption bar is enabled or disalidgd.
default, it is enabled.

This specifies the maximum size of the form. Thiadk value
(0, 0) indicates that there is no maximum sizetarduser can
resize the form to any size.

%

MinimizeBox This property is similar to théMaximizeBoxproperty. It
specifies whether the Minimize command on the Systeenu

and title bar is enabled or disabled. By defatis enabled.
MinimumsSize This property specifies the minimum size of therfor

$
Size This is the default size of the form when it isfidisplayed.
Text This property contains the text that appears otitleébar of the
form.

WindowState This property determines the initial state of ttvarf when it is
first displayed. The default state (Normal) posiidhe form
according to thelLocation and Size properties. The other
options are Minimized and Maximized.

&

So far you have created a form, set some of itpgsties, and examined the
code that Visual Studio 2005 generates. To makéotine useful, you need to
add controls and write some code of your own. Thedéws Forms library

contains a varied collection of controls. The pwg® of some are fairly

obvious—for examplé,abel, TextBox,, CheckBox, radioButton, ListBox and
ComboBox etc.

The Label Control

Let's create a label by dragging a Label contiaifthe Toolbox and dropping it on the
form.

G =

Teolbox

s B I

b All Windows Forms

4 Common Controls

k
@
=
s

Display Text in Label.

Pointer

Button
CheckBox
CheckedListBox

ComboBox

ListiBiox
List View

MaskedTextBox
ManthCalendar

MNetifylean

b Statt - Debug = AnyCPU

oL B W Formilovh [Design]® & X

IP_

e a: Forml

Labed1

Label Control

Private Sub Form_Load(ByVal sender As System.Opfggval e As System.EventArgs)

Handles MyBase.Load

End Sub

'display text in Label
Labell.Text = "Hello"

Text will display in Label when Form gets execukédin event of Label is the Click

event.

Private Sub Labell_ Click(ByVal sender As SystemedhjByVal e As

System.EventArgs) Handles Labell.Click

End Sub

'MessageBox will show message
MessageBox.Show("How are you")

When you click on the Text Hello written in Labben click event will fire and

messagebox will display the message.
Label Control Properties ForeColor:
ForeColor of Label can be changed through ForeGaioperty of Label.

Private Sub Form6_Load(ByVal sender As System.Q@pigacv/al e As System.EventArgs)
Handles MyBase.Load

‘change Label ForeColor

Labell.ForeColor = Color.Red
End Sub

2. The TextBox Control
Let's create a text box by dragging a Text Box iritom the Toolbox and dropping it on
the form.

Q - BaE@ 9+ - pStats Debug = AnyCPU - ||

Teolbox * 0 x
Search Toolbox = r

LinkLabel * ['e=Fom Entes =
ListBox
ListView =
MaskedTextBox i ?
MonthCalendar
Motifylcon
MNumencUpDown

-

=

—
L

MEEEGEHEFE.

PictureBox
Text Box Control
ProgressBar
RadicButton
RichTextBox

TextBox

TeolTip

TreeView

Example

In this example, we create three text boxes andhes€lick event of a button to display

the entered text using a message box. Take thaiold) steps:

Drag and drop three Label controls and three Texifmtrols on the form.

Change the texts on the labels to: Name, Organizaind Comments, respectively.
Change the names of the text boxes to txtNameygxa@d txtComment, respectively.

Drag and drop a button control on the form. Sehdse to btnMessage and its text

property to 'Send Message'.
Click the button to add the Click event in the cedadow and add the following code.

PublicClassForm1

PrivateSubForm1_LodsendeAsObject e ASEventArgs
HandlesMyBasé oad

' Set the caption bar text of the form.

Me.Text = "NOU.com"

End Sub

Private Sub btnMessage_Click(sender As Object, EVEntArgs) _
Handles btnMessage.Click

MessageBox.Show("Thank you " + txtName.Text + 'hfro+ txtOrg.Text)
End Sub End Class

When the above code is executed and run Usiag button available at the Microsoft Visual
Studio tool bar, it will show the following window:

Organization: Microsoft

Comment

Clicking the Send Message button would show thiedehg message box:

i

=2

Thank you Raman from Microsoft

3

. The CheckBox and RadioButton Controls

CheckBox code:

PrivateSubCheckBox1_ClickByVal sendeAs Object ByVal e As System.EventArgs)

HandlesCheckBox1.Click

' The CheckBox control's Text property is changachdime the
" control is clicked, indicating a checked or urcitesl state.
If CheckBox1.Checked FrueThen
CheckBox1.Text *Checked"
Else
CheckBox1.Text *tJnchecked"

EndIf
EndSub

Output :

Form1 @@

Checked

The form will look like bolow when we drag RadioBar controls on the forms

Form1 [:]@

O Yes

O No

Then we put this code on the double click of thiensi button and reset button

PrivateSubButton1_ClickByVal sendeAs SystemObject ByVal e As SystemEzventArg
s) HandlesButton1.Click

If RadioButton1.Checketihen

TextBox1.Text ='You Clicked"& " " & RadioButtonl.Text()

Elself RadioButton2.Checkethen

TextBox1.Text ="Your Clicked"& " " & RadioButton2.Text()

EndIf

EndSub

PrivateSubButton2_ClickByVal sendeAs SystemObject ByVal e As SystemEzventArg
s) HandlesButton2.Click

TextBox1.Text ="

EndSub

EndClass

Output:

Form1 [:]@

® Yes
:You Clicked Yes

O No

The Button, LinkButton, and ImageButton Controls
For example:

Write a web form to create two lafgumber andResult. Now create two text boxes, one
to input a number and other to output a number. N@ate three different buttons as
simple button, image button and link button to

showSquare SquareRootandCubeRootof give number.

The form looks like this:

00 Weblgphcaiond - Monsrt Vsl Sodo ole ey
Fle fit Ven Pupct Buld Debg Tom D2 Fomat Tl Took Avchtechme Tet Aodhe Window Hep

BT I I LR e A T 1] '

s

| Mew toD'sfomi +#7 | Mo -| Démtfory < D+ B I UIA ZIE IS 01G

QD Okt | SSome | (| i) dodp| omom]> | asplutiuio’ondipae.))

Figure

Now double click on the simple button and add til#ing code.

ProtectedSubcmdSquare_CliclRyVal sendeAs Object ByVal e As EventArgd Handles
cmdSquare.Click

Dim numAs Double= DoubleParse(txtNumber.Text)

Dim sqAs Double= num * num

txtResult. Text = sq.ToString()

EndSub

Now double click on the LinkButton and add the daling code.
ProtectedSubcmdSquareRoot_ClicBlVal sendeiAs Object ByVal e As EventArgd Ha
ndlescmdSquareRoot.Click

Dim numAs Double= DoubleParse(txtNumber.Text)

Dim sqAs Double= Math.Pow(num, 1.0/ 2)

txtResult. Text = sq.ToString()

EndSub

Now double click on the ImageButton and add thieWaihg code.
ProtectedSubcmdCubeRoot_CliclByVal sendeAs Object ByVal e As System.Web.UI.
mageClickEventArgsHandleemdCubeRoot.Click

Dim numAs Double= DoubleParse(txtNumber.Text)

Dim sqAs Double= Math.Pow(num, 1.0/ 3)

txtResult. Text = sq.ToString()

EndSub

Now save and run the application.

The List Controls
Let's create a list box by dragging a ListBox cohtrom the Toolbox and

dropping it on the form.

e - Ba e 9 - B Start ~ Debug = AnyCPU = ||| =
Toolbox * 1 X Formlwvb® Falrnl.vb [Design]* & X
Search Teolbox o

[All Windows Forms o o Forml |£”E|

4 Commoen Controls

Pointer
T et
Button L‘.I| o 'F‘
CheckBox i
| d . 5
CheckedListBox
ComboBox
DateTimePicker

Label
LinkLakel A ListBox Control

iFrEENEe ~

ListBox I
aa ListView

L) MaskedTextBox
MenthCalendar

You can populate the list box items either from pheperties window or at
runtime. To add items to a ListBox, select the Rest control and get to the
properties window, for the properties of this cohtClick the ellipses (...) button
next to the Items property. This opens the StringeCtion Editor dialog box,
where you can enter the values one at a line.

Example

In the following example, let us add a list boxdasign time and add items on it at

runtime.

Take the following steps:

Drag and drop two labels, a button and a ListBaxti@d on the form.

Set the Text property of the first label to provttle caption "Choose your favourite
destination for higher studies".

Set the Text property of the second label to previw caption "Destination”. The text on

this label will change at runtime when the useeatsl an item on the list.

Click the listbox and the button controls to add thllowing codes in the code editor.

%

PublicClassForm1
PrivateSubForm1_LodsendeAsObject e AsEventArggHandlesMyBas#.oad
' Set the caption bar text of the form.
Me.Text = "tutorialspont.com”
ListBox1.ltems.Add("Canada")
ListBox1.ltems.Add("USA")
ListBox1.ltems.Add("UK")
ListBox1.ltems.Add("Japan®)
ListBox1.ltems.Add("Russia")
ListBox1.ltems.Add("China")
ListBox1.ltems.Add("India")

End Sub

Private Sub Buttonl_Click(sender As Object, e Asriifrgs) Handles Buttonl.Click
MsgBox("You have selected " + ListBox1.SelectedIf€ostring())

End Sub

Private Sub ListBox1_SelectedindexChanged(send@®l#sct, e As EventArgs)

Handles ListBox1.SelectedindexChanged

Label2.Text = ListBox1.Selectedltem.ToString()
End Sub
End Class

When the above code is executed and run usingl&tan available at the Microsoft

Visual Studio tool bar, it will show the followingindow:

When the user chooses a destination, the texeise¢hond label changes:

Clicking the Select button displays a message htxthe user's choice:

1. On the Debug menu, click Start Without Debugginguio the application.

2. Typein afirst name and a last name, and thercseal®wer from the list. Click Add. In

the message box that appears displaying the medab&ryou entered, click OK.
3. Try and close the form. In the message box thatays) click No.

The form should continue running.
4. Try and close the form again. In the message Hk ¥es.

This time the form closes and the application fieis.

1.3Ilmplementing Class Library Object

Class: A class allows you to create objects of the cléssclass can be defined with data
fields, properties, methods and events. You caaterebjects based on that class that hav

state (fields, properties) and behavior (method®nes). A class can be considered as

specification of how the object of the class shdatik like and behave.

An object of the class is nothing other than a saqa of bytes at a specific memory locatior

in the memory heap. Thus we can understand thabjact is an instance of the class. We cat

see an illustration of a class.

Open VS.NET

Select "File New Blank Solution® from the Pull wio menu.

Then you will see the "New Project" Window
Enter "MyCalculator" as the solution name

Specify a folder of your choice to store the saltin

e

Click "OK" and the empty solution will be created

We have an empty solution. Now our first step Wwélto set up the project which contains the

tests. This project will be a class library becacsgnit does not need a special entry point.

It will find test methods through the attributes giee them.

Select "File Add Project New Project Visual RaBrojects Class

Library"

Enter "MyCalculatorTests" as the name

Click "OK"

Unfortunately VS.NET always creates its defaulssléalled "Class1") when you add
a project. It has shown to be the fastest way ketel¢his class and to add the own ones
later. So we delete "Class1" from the project (gan do this by right-clicking on the
class name in the Solution Explorer and selectidgjéte").

Now we will set up the project which we are goingdst. The Steps are the same as for the

test project:

Select "File Add Project New Project Visual RaBrojects Class
Library"

Enter "MyCalculator" as the name

Click "OK"

Remove "Classl" from the project

In order to let the test project know where it &ad the classes that it shall use (csUnit classe
and the classes from the class library to be tgstecheed to set up references to these
Projects/Assemblies.

12

In the Solution Explorer Right-Click the "Referest@ode of the project
"MyCalculatorTests"

Select "Add Reference ..."

In the .NET tab select the item with the compomehe "csUnit" by double clicking
or by marking it with a left mouse click and preggthe "Select” button:

" # $ I $% !

I & $
(%
) * % $+
Click "Open"

Now you should see the new class in the code window

To define this class as a test fixture we needsiga the corresponding csUnit attribute now
Modify the class code like this

Imports csUnit
<TestFixture()> _
Public Class BasicArithmeticsTests

End Class
The imports statement tells VB.NET to import th&Jiecg namespace which contains the
TestFixture Attribute.

Now the big moment has come. We are going to cteatérst test. Our first test consists of
the following code:

Imports csUnit
Imports MyCalculator

<TestFixture()> _
Public Class BasicArithmeticsTests
<Test()> _

Dyhiisn Ol
 Oonc-ouo

Dim ba As BasicArithmetics

ba = NewBasicArithmetics()
Assert.Equals(3, ba.Add(1, 2))
End Sub

End Class

Note: The <:Test()> attribute tells csUnit that Sheb "Add" shall be executed by csUnit as a
test.

As soon as you try to build this you will see ttted compiler does not like it. There isn't a
BasicArithmetics class.

Let us do something against that: Create a nevg clated "BasicArithmetics" in the project
"MyCalculator"”. Initially this class shall have thalowing code:

Public Class BasicArithmetics
Public Function Add(ByVal numl As Integer ,
ByVal num2 As Integer) As Integer
Add =0
End Function
End Class

Yes, you are right. This Add method will alwaysureta O.

We strongly recommend you to write tests in sucbraler that you have seen each test as
failed (red) before you add the functionality tokadhe test successful (green). That is the
only way to make sure that the program does exadibt the tests demand.

Now the first test and the first part of the prograre written. The Solution should build now.
Then we can go on and run the test.

Before we run the tests please make sure thaesh@itoject is defined as StartUp project. This
is the case if the project name of the test projdgiCalculatorTests" is written in bold letters

in the solution explorer. If this is not the caggt-click on the project name and select "Set as
StartUp Projecs

%

1$
"2 ! + $ %

Public Class BasicArithmetics
Public Function Add(ByVal numl As Integer ,
ByVal num2 As Integer) As Integer
Add = huml + num2
End Function
End Class

1.4VB.NET’s Implementation Inheritance

One thing to realize is that in VB.NET, all classee inheritable by default. This includes
forms, which are just a type of class. This meaos gan create a new form based on a

existing form.

Inheritance Example

Create a new VB.NET Windows Application project araine it InheritanceTest. Add a button
to the form and go to the code window. In the cautl the following class. Make sure that

you add it outside the class for the form!
Public Class Person
Dim localName, localAddress As String

Property Name() As String
Get
Name = localName
End Get
Set(ByVal Value As String)
localName = Value
End Set
End Property

Property Address() As String
Get
Address = localAddress
End Get
Set(ByVal Value As String)
localAddress = Value
End Set
End Property

Public Function Enroll() As Boolean
‘check class enrollment

‘if enrollment < max. class size then
‘enroll person in class
Enroll = True

End Function

End Class
This code creates a Person class with two progerlame and Address, and an Enroll

method. So far, there is nothing about this clhasyou haven't seen before.
Now, add a second class, called Student. Your sbdald look like this

Public Class Student
Inherits Person

End Class

As you can see, there isn’'t any implementation dadgtudent at all. There are no propertieg

or methods defined. Instead, all you do is inHeoin Person.

Now, in the Buttonl_Click event handler on the fpadd the following code:

Dim Student As New Student()
MsgBox(Student.Enroll)

Your form is creating an instance of the Studeassl The only code in the Student class is an
Inherits statement that inherits the Person classwever, because VB.NET supports
inheritance, you'll be able to call the Enroll methof the Person class from within the Student
class, even though the Person class does not #lyptlefine an Enroll method. Instead, the
Enroll method is present because Student is inhgrihe method from Person. Go ahead and

run the project to verify that the message box depsrt back a value of True.

Is it possible to instantiate Person directly?His tcase, yes. For example, you could modify
the Buttonl_Click event handler to look like this:

Dim Student As New Student()

Dim Person As New Person()
MsgBox(Student.Enroll & “ - from Student”)
MsgBox(Person.Enroll & “ - from Person”)

Both of these calls to the Enroll method will wditke.

.Shared Members

VB.NET introduces the concept of shared memberar&@hmembers are a way of cre-ating a
member (a property, procedure, or field) that iarel among all instances of a class. Foy
example, you could create a property for a databaseection string. This will be the same for
each class, so you can fill it in for one class alhdlasses can then see

that one property. Shared properties are most afsad in inheritance, so that all objects
created from derived classes can share the saméeneswsross all instances of the class

However, shared members can be used without reégamtieritance.

=

Imagine that you have an XML file or other persist® mechanism for the student data listeg
earlier, and you want to define a method to be &bfend a student, given his name, and return
the student object. Rather than the COM model ofnigaa factory to create the object, you

could add the Find functionality as a shared metbdte student class. For example:

Public Class Student
Inherits Person

Public Shared Function Find(ByVal studentName A8} _ As Student

Dim Student As New Student()
Dim xmlobj As Xml.XmIElement
‘get the xml object
fill in the mName field
fill in the mAddress field
Return Student
End Function
End Class

Shared methods are commonly used in the runtiménierability to create a specific instance
of an object, for example System.|O.CreateDireq)otlyat will create a directory in the file
system, and return a Directorylnfo object. The s&ystem.lO. Directory class also provides 3

shared method, Move, to rename a directory.

Inheritance Keywords

There are a number of keywords associated withritaimee. Remember that by default, all
classes you create are inheritable. You inhermnfidasses using the Inherits keyword. The
class from which you inherit is then known as thediclass. The Inherits keyword can be use
only in classes and interfaces. It is importanpdint out that a derived class can only inherit

from one base class.

Forcing or Preventing Inheritance

The NotInheritable modifier is used to mark a classiot inheritable; in other words, it cannot
be used as a base class. If you were to modiffPéison class in your InheritanceTest project

it would look like this:

Public NotIinheritable Class Person

If you change the Person definition to look like tbreceding line, Student will no longer be

able to inherit from Person.
In contrast to the Notlnheritable modifier, thesealso a Mustinherit modifier. Mustinherit
says that a class cannot be instantiated dirdodyead, it must be inherited by a derived clasg

and the derived class can be instantiated.

If you changed Person to include the Mustinhenward, it would look like this:

d

Public MustInherit Class Person

Now, you would not be able to use the followingelwf code in the client:

Dim Person As New Person

However, you would still be able to inherit Persoryour Student class, and your client could

instantiate Student.

Overriding Properties and Methods

When you inherit a base class, the properties agithads cannot be overridden, by default
Given your earlier example in InheritanceTest, yould not have created a function namec
Enroll in Student because one existed in Persoerelis a modi-fier, NotOverridable, that says
a particular property or method cannot be overmdd<hough methods are normally not
overridable, you can use this keyword only in aquei case: If you have a method that is
already overriding a base method, you can markéwe derived method as NotOverridable.

If you want to allow a property or method to be wilen, you can mark it with the

Overridable modifier, as shown here:

Public Overridable Function Enroll() As Boolean

Now, your Student can create its own Enroll methiamido so, your client will have to use the

Overrides modifier, so it would look like this:

Public Overrides Function Enroll() As Boolean

In the VB.NET IDE, it is also possible to use thhiegdown lists at the top of the code window

to override methods or implement interfaces.

There is also a MustOverride modifier. This foreederived class to override the property of
method. The MustOverride modifier changes the sirecof the prop-erty or method. Because
the property or method must be overridden, you aopait any implementation code in it. In
fact, there is not even an End Property or End SukEnd Function when using the
MustOverride modifier. If a class has even a simylgerty or method with the MustOverride
modifier, that class must be marked as MustInherit.

For example, here you have a base Transportatess dhat has a method, Move, that ig
marked as MustOverride. This means that Transpontatust be marked as Mustinherit. The
Train class inherits from Transportation, and tbearrides the Move method.

Public Mustinherit Class Transportation

MustOverride Function Move() As Boolean

End Class

Public Class Train

Inherits Transportation

Public Overrides Function Move() As Boolean

‘code goes here

End Function
End Class
Although you can override a base class propertp@thod in your derived class, you can still
access the properties or methods in the base wdasg the MyBase keyword. This allows you

to call base classes members even though you vavedanlen them in your derived class.

For example, assume you wanted to have a Transiportdass, with an overrid-able function
called Move. Train then inherits from Transportatiand implements its own Move method,
overriding the one in Transportation. However, firegan call its Move method or the one in

Transportation. The method CallMethods calls fir Move in Train, and then the Move in
Transportation. The user will see two message hoKes first will have the text Hello from

the Train class, whereas the second will haveekieHello from the Transportation class.

Public Class Transportation
Overridable Function Move() As Boolean
MsgBox(“Hello from the Transportation class”)
End Function
End Class

Public Class Train
Inherits Transportation
Public Overrides Function Move() As Boolean
MsgBox(“Hello from the Train class”)
End Function

Public Sub CallMethods()
Move()
MyBase.Move()
End Sub
End Class
Related to MyBase is MyClass. Assume that, in yaasge class, you have method A calling an
overridable method B. If you want to verify thaetimethod B you call is the one you wrote in
the base class, and not the derived, overriddehadeB in the derived class, call method B

with the MyClass qualifier, as in MyClass.B.

For example, assume that you have a Transportelthss that has two methods:

MakeReservation and BuyTicket. MakeReservatiorsdllyTicket.

MakeReservation and BuyTicket are both overridab¥aur Train class can inherit
Transportation, and create a BuyTicket method ¢katrides the BuyTicket in Transportation.
If you don’t create a MakeReservation in Train, iyoall to MakeReservation will use the code
in the Transportation class. However, if the codeTransportation.MakeReservation calls
BuyTicket, by default you'll call the BuyTicket youe created in Train. Here is the code:

Public Class Transportation
Overridable Function MakeReservation() As Boolean
‘CheckSchedule
BuyTicket()
‘etc
End Function
Overridable Function BuyTicket() As Boolean MsgB@€neric
Transportation implementation”)
End Function
End Class

Public Class Train
Inherits Transportation

Public Overrides Function BuyTicket() As Boolean
MsgBox(“Train-specific implementation”)
End Function
End Class

Now, suppose that you want the MakeReservation dath the BuyTicket method in

Transportation, even if Train overrides BuyTickBb. accomplish this, just change

Transportation.MakeReservation to this:

Public Class Transportation
Overridable Function MakeReservation() As Boolean
‘CheckSchedule
MyClass.BuyTicket()
‘etc
End Function

In this case, if your client calls Train.MakeResdion, the MakeReservation method will call
the BuyTicket in the base class (Transportatiosjeiad of the overridden BuyTicket (if one
exists in Train). However, it's important to notdat if your Train class overrides
MakeReservation, MyClass will not come into playisTis because you will be calling the

overridden MakeReservation, which won't include ktgClass keyword.

Polymorphism
Polymorphism is the ability to change the impleraéinh of a base class for different objects

For example, if you have a bicycle and a car, lsathmove, but they do
so in very different ways. They use different meubms for movement, and the distance that
each can move in an hour is significantly differeviet, both a Car and a Bike class might
inherit from a base Transportation class, whichidtalso be used as the basis for a Plane class,

a Train class, a HotAirBalloon class, and so on.

Polymorphism with Inheritance

Polymorphism was possible in VB6 using interfacgkich will be examined in a moment.
VB.NET allows you to perform polymorphism using @mttance. The dif-ference from what
you have done so far is that you can actually heébaise class as a variable type, and you can

handle any derived class with that new variable.

For example, examine the following code. The Trangpion class contains just one method
Move. Two classes inherit the Transportation cl&ss: and Bicycle. Both have overridden the

Move method. The code looks like this:

Public Mustinherit Class Transportation
Public MustOverride Function Move() As Boolean
End Class

Public Class Bicycle
Inherits Transportation
Overrides Function Move() As Boolean
‘code here

%

Move = True
End Function
End Class

Public Class Car
Inherits Transportation
Overrides Function Move() As Boolean
‘different code here

Move = True
End Function
End Class

So far, this looks similar. However, notice now Wwhyaur client can do. It cannot directly
create an instance of Transportation becausemarked as Mustinherit. But, you can declare ¢
variable of type Transportation. You can be asstimatiany object that inherits Transportation
has a Move method, and you don’t have to worry aldat kind of object it is. Your client
code might look like this:
Protected Sub Button1_Click _

(ByVal sender As Object, ByVal e As System.Eventrg

Dim MyCar As New Car()
Dim MyBike As New Bicycle()

PerformMovement(MyCar)
PerformMovement(MyBike)
End Sub

Public Sub PerformMovement(ByVal Vehicle As Trangation)
If Vehicle.Move() Then
‘do something
End If
End Sub

You'll notice that the PerformMovement sub accepisaargument of type Transportation. This

sub doesn’t care if you pass it an object of CaBmycle type. Because the object being

passed in inherits from Transportation, it is goaeed to support the Move method, so the

code will run without problems.

1S4

Polymorphism with Interfaces

Interfaces still exist in VB.NET. In VB6 and COMydy were most often used when you
needed to be able to modify your code without breglexisting clients. You could actually
modify the structure of your classes, but providarderface that looks like the old version of
the component. This kept existing client applicagidvappy while at the same time you were

able to modify the classes to enhance functionality

In VB.NET, you can still use interfaces this waywever, interfaces are best used when yo
want to be able to use different object types engame way, and the objects don’t necessaril
share the same base type. For example, the IEnblaenaterface is used to expose an
enumerator for a class. Using this interface, yamu move through a class using For Each, eve

if the class is not based on a Collection object.

o

You'll see an example of polymorphism with integaasing the same example of the Car an
the Bicycle. First, Transportation will be crea@slan interface instead of a base class, whig
might make more sense: The Move method is moslylilkebe quite different between a car
and bicycle. Then, you'll implement the Transpodatinterface. Finally, you'll call the
objects from the client.

Interface Transportation
Function Move() As Boolean
End Interface

Public Class Bicycle
Implements Transportation
Function Move() As Boolean Implements Transportatitove
‘code here
Move = True
End Function
End Class

Public Class Car

Implements Transportation

Function Move() As Boolean Implements Transportatitove

‘ different code here Move = True

End Function
End Class
You'll notice that now, when you implement from arterface, you don’t have to use the
Overrides modifier. In addition, the method defonitis followed by an Implements keyword
that specifies which method in the interface theemt method is implementing. This allows
you to have different names for the methods inctass that is implementing the interface. The

client code here will be the same as it is whenyseiinheritance polymorphism.

1.5Visual Studio.NET Namespaces

Software projects consist of several pieces of cuabd as classes, declarations, procedures a
functions etc., known as the component or idemsifad the software project. In large projects
the number of these components can be very lafggselcomponents can be grouped into
smaller subcategories. This logical grouping cartstis known as a "Namespace" or we can
say that the group of code having a specific na@"Namespace”. In a Namespace the
groups of components are somehow related to e&eln. dlamespaces are similar in concept tc
a folder in a computer file system. Like folderapmespaces enable classes to have a unique
name or we can say that it is a logical naming sehr grouping related types. A Namespace
is sometimes also called a name scope. An identiéned in a Namespace belongs to that
Namespace and the same identifier can be indepéyndefined in multiple Namespaces with
a different or the same meaning. Every project#0€VB.NET starts with a Namespace, by

default the same name as the name of the project.

o

A

)
Why we need it

We must add a reference of the Namespace objemtebe$ing that object in a project. Several
references are automatically added in the projgddfault. The VB.Net "Imports" keyword is
used to add a reference of a namespace manually.

Example

Note: Imports allow access to classes in the referencdd$pace only not in its internal or

child Namespaces. If we want to access internal @ééaace we might need to write:

Namespaces are basically used to avoid namingicwmii, when we have multiple classes with
the same name, and it is also helpful for orgagizlasses libraries in a hierarchal structure|
Namespaces allow us to organize Classes so thgt dae be easily accessed in otherf

applications. Namespaces also enable reusability.

A class in .Net Framework cannot belong to multigeenespaces. One class should belong to
only one Namespace. VB.NET does not allow two eassith the same name to be used in a

program.

We can define a Namespace using the "Namespacetokey The syntax for declaring a
Namespace is:

Note: All the classes in the .Net Framework belongs eoSlgstem Namespace. The "system'’
Namespace has built-in VB functionality and all@tiNamespaces are based on this "systen

Namespace

Accessing Members of a Namespace

We can access a member of a Namespace by using. aaperator, also known as the period
operator. The members of a Namespace are the lemjgirocedures and classes that ar
defined within a Namespace. To access the memb&maimespace in a desired location typs
the name of the namespace followed by the dot dogeperator followed by the desired

member of the namespace.

Example

MyNamespace.Classl.disp() 'Accessing elements of the MyNamspace

we can access a member of a namespace in various ways. The following program
shows accessing the element of a namespace in various ways.

| | #
$% & !
(S)!) %
+ $% "
: (%) ! -) %
/ $%
(S)0
1) %
* 2

=

U

/ I $%
$%
$%
! $%
#
1 4 "
* $%
+
Output
2
$
*
+

Nesting a Namespace

)"

$%

)

$%

564 (%

Nesting a Namespace means create a namespacednsaeespace. A good way to organizg

namespaces is to put them in a hierarchal ordergeneral name at the top of the hierarchy
and put specific names at the lower level.

Example
(%

+
/

1 ($

) %
+
/ $%
$%
$%
$%

Output

$%

$%

yo

%

Note: You can not have two classes with the same narnieisame scope

class overloading is not allowed.

Example
2
l n
$% 1"
%)") 564 (%
+
, " 1
: $%
/ 8)') %

. In other words,

You can avoid this by putting classes with the same name in a different scope.

Example

Output

%

$%
$%

$%

$%

$%

e
$%
)" n
564 (%

564 (

Aliases of the Namespaces

Aliases are created when we have nested Namespaesasy to access the members of th

1%}

namespaces by the alias. An alias is a shortcwt foested namespace with a shorter label. An

alias of a namespace is created with the helpeofithports" keyword. Aliasing is useful when

we are working with a large project

Example

"%
) 564 (%

)"

$%

4 1

564 (

%

, $%
. $%
/ $% - 4
1
$% - 4
4
1.6Summary

In Windows application, Form is going to act aatainer to hold various controls.
Check box and Radio buttons are provides the ughrgroup of choices. But check Box
supports multiple choices whereas the Radio bustomutually exclusive.
List and Combo box list the group of items that tilser can select. Difference between
these two is the combo has in build place holdeu$er’s selection.
As you can see, setting up inheritance is notaliffi However, the challenge comes when you
design your components and your object model. Itdrere is quite pow-erful, but you must
intelligently define your base classes to make theoad enough to be inheritable, but genera

enough to be useful to many derived classes.

With the introduction of implementation inheritancéB.NET moves into the realm of

object-oriented (OO) languages for the first tinB6 had some OO constructs, but the
addition of implementation inheritance, one of thwst basic OO concepts, greatly
strengthens VB.NET’s OO portfolio.with the help mémespaces we can include the class

library into your applications.

o OO IO I ENRAG T oot o

1. Design a window form application for the regasion in NOU
2. Explain different fundamental properties & metb@f Window forms
3. Explain the implementation of class library mnet?

5. Explain the implementation of inheritance inndi?

6. What is namespaces? Why we need it?

1.8 Suggested Readings:
Visual Basic Tutorial
http://www.vbtutor.net/VB2008Book/vb2008me_preview.pdf

http://www.functionx.com/vbnet/Lesson03.htm
http://vb.net-informations.com/gui/windows_forms.htm

