
��������	���
����������������������� 	 �

�

UNIT 1 Introducing of Windows Forms

 1.0 Objective:

� Create Windows Forms applications.

� Use common Windows Forms controls such as labels, text boxes, and buttons.

� Change the properties of Windows Forms and controls at design
time and programmatically at run time.

� Subscribe to and process events exposed by Windows Forms and controls.

1.1 Introduction:
�
In this unit you will learn how to create windows form in vb.net, uses of different

windows controls on the form, setting their properties and handling the events of the

form controls. , all these controls are basically a graphical object. These graphics

objects help the user to interact with an application in a friendly way You will learn

Structure Page Nos.
1.0 Objectives

1.1 Introduction

1.2 Creating a Windows Forms Application

1.3 Implementing Class Library Object

1.4 Vb.Net implementation of Inheritances

1.5 Namespaces

1.6 Summary

1.7 Questions for Exercise

1.8 Suggested Readings

��

about the creation of class library, implementation of inheritance and the uses of

namespaces�� � �

	��� Creating a Windows Forms Application

In this exercise, you’ll start building the Middleshire Bell Ringers Association

application by creating a new project, laying out the form, and adding Windows

Forms controls to the form. Because you have been using existing Windows

Forms applications in Microsoft Visual Studio 2005 in previous chapters, much

of the first couple of exercises will be a review for you.

���

1. Start Visual Studio 2005.

2. On the File menu, point to New, and then click Project.

3. In the Project Types pane, select Visual C#.

4. In the Templates pane, select Windows Application.

5. In the Name text box, type share market.

6. In the Location list box, navigate to the Microsoft Press\Visual
CSharp Step by Step\

7. Click OK.

The new project is created and contains a blank form called Form1.

��������	���
����������������������� � �

Set the properties of the form

1. Select the form in the Designer View window. In the Properties

window, click the (Name) property, and then type MemberForm in the

(Name) text box to change the name of the form. (If the Properties

window is not displayed, click Properties Window on the View menu,

or press F4.)

2. In the Properties window, click the Text property, and then type share

market, to change the text in the title bar of the form.

3. In the Properties window, click the BackgroundImage property, and

then click the Ellipses button in the adjacent text box.

The Select Resource dialog box opens.

4. In the Select Resource dialog box, click Local resource and then

click Import. The Open dialog box opens.

5. In the Open dialog box, navigate to the My Documents folder, select

the image.gif file, and then click Open.

��

���� ���������	
��������
��������
����������
��
��� ��
� ���� ������	����������
		��

������������������
���������
	�������� ����������������	�������		��

�
������������� ����� ������������
����������������	����������
������	 	��
��������
	���
����������������
����������������

Part of the image will be displayed in the Select Resource dialog box.

6. In the Select Resource dialog box, click OK.

The BackgroundImage property is now set to the image.

7. In the Properties window, click the BackColor property, and then click

the down-arrow button in the adjacent text box.

A dialog box opens.

8. On the System tab of the dialog box, click Window. This value sets

the background color of all the controls that you drop onto the form to

the same color as the window itself.

9. Select the Font property. This is a composite property that has many

attributes. In the Properties window, click the plus sign (+) to expand

the Font property and display the attributes. Type 12 for the Size

attribute of the font, and set the Bold attribute to True.

10. Change the form’s Size property, which is also a composite property. In

the Properties window, click the plus sign (+) to expand the Size

property and display the attributes. Set the Width attribute to 600 and

the Height attribute to 470.

��������	���
����������������������� � �

The form should look like the image in the following graphic.

 On the Build menu, click Build Solution. The form should build successfully.
11. On the Debug menu, click Start Without Debugging.

The application will start running and will display the main form containing the image.
The form does not do anything useful yet, so close it and return to Visual Studio.

�

�

�

��������������������������������� ���������!�

If you look closely at the Properties window when a form is selected, you can

see that there are over fifty properties available. Some of them are fairly

obvious; for example, the Text property that corresponds to the text displayed

in the form’s title bar. Some properties are useful under certain circumstances;

for example, you can remove the Minimize, Maximize, and Close but- tons, or

remove the System menu from the title bar of a form by setting the ControlBox

prop- erty to False—useful if you want to ensure users cannot close the form

unless they execute some code that closes it explicitly. Other properties apply

to very specific circumstances; for example, the Opacity property can be used

to control the level of transparency of the form. The following table describes

"�

 ������#� $�����������

some of the common form properties that you can change at design time. You

should also be aware that there are additional properties not listed in the

Properties window that you can use only programmatically at run time. For

example, the ActiveControl property shows which control in the form

currently has the focus.

(Name) The name of the form. Two forms in the same project cannot

have the same name.
BackColor The default background color of any text and graphics in the form.
BackgroundImage A bitmap, icon, or other graphic file to be used as a backdrop

to the form. If the image is smaller than the form, it can be tiled

to fill the form, stretched, centered, or zoomed by using the
BackgroundImageLayout property.

Font The default font used by the controls embedded on the form
that display text. This is a compound property—you can set
many attributes of the font including the font name, size, and
whether the font appears italic, bold, or underlined.

ForeColor The default foreground color of any text and graphics in the form.
FormBorderStyle This controls the appearance and type of border of the form. The

default set- ting is Sizable. Other options specify borders that
are not resizable or do not have the various System menu
buttons.

Icon This specifies the icon that appears in the form’s System menu
and on the Mi- crosoft Windows taskbar. You can create your

own icons by using Visual Stu- dio 2005.
Location This is another compound property that specifies the

coordinates of the top left corner of the form with respect to its
container, which might be another form or the screen.

MaximizeBox This property specifies whether the Maximize command on the

System menu and caption bar is enabled or disabled. By
default, it is enabled.

MaximumSize This specifies the maximum size of the form. The default value
(0, 0) indicates that there is no maximum size and the user can
resize the form to any size.

��������	���
����������������������� %�

MinimizeBox This property is similar to the MaximizeBox property. It

specifies whether the Minimize command on the System menu

and title bar is enabled or disabled. By default, it is enabled.
MinimumSize This property specifies the minimum size of the form.

�

�
�

Size This is the default size of the form when it is first displayed.
Text This property contains the text that appears on the title bar of the
form.
WindowState This property determines the initial state of the form when it is

first displayed. The default state (Normal) positions the form
according to the Location and Size properties. The other
options are Minimized and Maximized.

�

�����������&��������������

So far you have created a form, set some of its properties, and examined the
code that Visual Studio 2005 generates. To make the form useful, you need to
add controls and write some code of your own. The Windows Forms library
contains a varied collection of controls. The purposes of some are fairly
obvious—for example, Label, TextBox,, CheckBox, radioButton, ListBox and
ComboBox etc.

The Label Control

Let's create a label by dragging a Label control from the Toolbox and dropping it on the

form.

 ������#� $�����������

'�

Display Text in Label.

Private Sub Form_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 'display text in Label

 Label1.Text = "Hello"

 End Sub

Text will display in Label when Form gets executed.Main event of Label is the Click

event.

Private Sub Label1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Label1.Click

 'MessageBox will show message

 MessageBox.Show("How are you")

End Sub

��������	���
����������������������� (�

When you click on the Text Hello written in Label then click event will fire and

messagebox will display the message.

Label Control Properties ForeColor:

ForeColor of Label can be changed through ForeColor Property of Label.

Private Sub Form6_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 'change Label ForeColor

 Label1.ForeColor = Color.Red

End Sub

2. The TextBox Control

Let's create a text box by dragging a Text Box control from the Toolbox and dropping it on

the form.

Example

)�

In this example, we create three text boxes and use the Click event of a button to display

the entered text using a message box. Take the following steps:

Drag and drop three Label controls and three TextBox controls on the form.

Change the texts on the labels to: Name, Organization and Comments, respectively.

Change the names of the text boxes to txtName, txtOrg and txtComment, respectively.

Drag and drop a button control on the form. Set its name to btnMessage and its text

property to 'Send Message'.

Click the button to add the Click event in the code window and add the following code.

PublicClassForm1

PrivateSubForm1_Load(sender AsObject, e AsEventArgs) _

HandlesMyBase.Load

' Set the caption bar text of the form.

Me.Text = "NOU.com"

End Sub

Private Sub btnMessage_Click(sender As Object, e As EventArgs) _

Handles btnMessage.Click

MessageBox.Show("Thank you " + txtName.Text + " from " + txtOrg.Text)

End Sub End Class

When the above code is executed and run using Start button available at the Microsoft Visual

Studio tool bar, it will show the following window:

��������	���
����������������������� 		 �

Clicking the Send Message button would show the following message box:

3. The CheckBox and RadioButton Controls

CheckBox code:

 Private Sub CheckBox1_Click(ByVal sender As Object, ByVal e As System.EventArgs)

 Handles CheckBox1.Click

 ' The CheckBox control's Text property is changed each time the

 ' control is clicked, indicating a checked or unchecked state.

 If CheckBox1.Checked = True Then

 CheckBox1.Text = "Checked"

 Else

 CheckBox1.Text = "Unchecked"

	��

 End If

 End Sub

Output :

The form will look like bolow when we drag RadioButton controls on the forms

��������	���
����������������������� 	� �

Then we put this code on the double click of the submit button and reset button

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArg

s) Handles Button1.Click

If RadioButton1.Checked Then

 TextBox1.Text = "You Clicked" & " " & RadioButton1.Text()

ElseIf RadioButton2.Checked Then

 TextBox1.Text = "Your Clicked" & " " & RadioButton2.Text()

End If

 End Sub

Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As System.EventArg

s) Handles Button2.Click

 TextBox1.Text = ""

End Sub

 End Class

Output:

	��

The Button, LinkButton, and ImageButton Controls

For example:

Write a web form to create two label Number and Result. Now create two text boxes, one

to input a number and other to output a number. Now create three different buttons as

simple button, image button and link button to

show Square, SquareRoot and CubeRoot of give number.

The form looks like this:

Figure

��������	���
����������������������� 	� �

Now double click on the simple button and add the following code.

Protected Sub cmdSquare_Click(ByVal sender As Object, ByVal e As EventArgs) Handles

 cmdSquare.Click

Dim num As Double = Double.Parse(txtNumber.Text)

Dim sq As Double = num * num

txtResult.Text = sq.ToString()

End Sub

Now double click on the LinkButton and add the following code.

Protected Sub cmdSquareRoot_Click(ByVal sender As Object, ByVal e As EventArgs) Ha

ndles cmdSquareRoot.Click

Dim num As Double = Double.Parse(txtNumber.Text)

Dim sq As Double = Math.Pow(num, 1.0 / 2)

txtResult.Text = sq.ToString()

End Sub

Now double click on the ImageButton and add the following code.

Protected Sub cmdCubeRoot_Click(ByVal sender As Object, ByVal e As System.Web.UI.I

mageClickEventArgs) HandlescmdCubeRoot.Click

Dim num As Double = Double.Parse(txtNumber.Text)

Dim sq As Double = Math.Pow(num, 1.0 / 3)

txtResult.Text = sq.ToString()

End Sub

Now save and run the application.

The List Controls

Let's create a list box by dragging a ListBox control from the Toolbox and

dropping it on the form.

	"�

You can populate the list box items either from the properties window or at

runtime. To add items to a ListBox, select the ListBox control and get to the

properties window, for the properties of this control. Click the ellipses (...) button

next to the Items property. This opens the String Collection Editor dialog box,

where you can enter the values one at a line.

Example

In the following example, let us add a list box at design time and add items on it at

runtime.

Take the following steps:

Drag and drop two labels, a button and a ListBox control on the form.

Set the Text property of the first label to provide the caption "Choose your favourite

destination for higher studies".

Set the Text property of the second label to provide the caption "Destination". The text on

this label will change at runtime when the user selects an item on the list.

Click the listbox and the button controls to add the following codes in the code editor.

��������	���
����������������������� 	%�

PublicClassForm1

PrivateSubForm1_Load(sender AsObject, e AsEventArgs)HandlesMyBase.Load

' Set the caption bar text of the form.

Me.Text = "tutorialspont.com"

ListBox1.Items.Add("Canada")

ListBox1.Items.Add("USA")

ListBox1.Items.Add("UK")

ListBox1.Items.Add("Japan")

ListBox1.Items.Add("Russia")

ListBox1.Items.Add("China")

ListBox1.Items.Add("India")

End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

MsgBox("You have selected " + ListBox1.SelectedItem.ToString())

End Sub

Private Sub ListBox1_SelectedIndexChanged(sender As Object, e As EventArgs)

Handles ListBox1.SelectedIndexChanged

	'�

Label2.Text = ListBox1.SelectedItem.ToString()

End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft

Visual Studio tool bar, it will show the following window:

When the user chooses a destination, the text in the second label changes:

��������	���
����������������������� 	(�

Clicking the Select button displays a message box with the user's choice:

�)�

*����������&��������
1. On the Debug menu, click Start Without Debugging to run the application.

2. Type in a first name and a last name, and then select a tower from the list. Click Add. In
the message box that appears displaying the member data you entered, click OK.

3. Try and close the form. In the message box that appears, click No.

The form should continue running.

4. Try and close the form again. In the message box, click Yes.

This time the form closes and the application finishes.
�

�

 1.3 Implementing Class Library Object

Class: A class allows you to create objects of the class. A class can be defined with data

fields, properties, methods and events. You can create objects based on that class that have

state (fields, properties) and behavior (methods, events). A class can be considered as a

specification of how the object of the class should look like and behave.

An object of the class is nothing other than a sequence of bytes at a specific memory location

in the memory heap. Thus we can understand that an object is an instance of the class. We can

see an illustration of a class.

������������	
���	�

· Open VS.NET

· Select "File New Blank Solution" from the Pull down menu.

Then you will see the "New Project" Window

· Enter "MyCalculator" as the solution name

· Specify a folder of your choice to store the solution in

��������	���
����������������������� �	 �

�

�

· Click "OK" and the empty solution will be created

�

�

������������������	���� �

We have an empty solution. Now our first step will be to set up the project which contains the

tests. This project will be a class library because csUnit does not need a special entry point.

It will find test methods through the attributes we give them.

· Select "File Add Project New Project Visual Basic Projects Class

Library"

· Enter "MyCalculatorTests" as the name

· Click "OK"

· Unfortunately VS.NET always creates its default class (called "Class1") when you add

a project. It has shown to be the fastest way to delete this class and to add the own ones

later. So we delete "Class1" from the project (you can do this by right-clicking on the

class name in the Solution Explorer and selecting "Delete").

���

· ��������	
������	
����������	��������	����������� ����������
���	�
���

�

������������
����
���������	���� �

Now we will set up the project which we are going to test. The Steps are the same as for the

test project:

· Select "File Add Project New Project Visual Basic Projects Class

Library"

· Enter "MyCalculator" as the name

· Click "OK"

· Remove "Class1" from the project

������������������	�������������	���� �

In order to let the test project know where it can find the classes that it shall use (csUnit classes

and the classes from the class library to be tested) we need to set up references to these

Projects/Assemblies.

��������	���
����������������������� �� �

· In the Solution Explorer Right-Click the "References" node of the project

"MyCalculatorTests"

· Select "Add Reference ..."

· In the .NET tab select the item with the component name "csUnit" by double clicking

or by marking it with a left mouse click and pressing the "Select" button:

�

· ���	���������	��	�������	���������	������������ ����	�����������

�
· ������
����� ��
· ����	��������	���	��	�������	��������������
���	�
� �
��	�������	
����!������������

�

���

��������������������� �

������	"��#��	��	�������	��$����	�
���	�������
�� ���	�����	��	��
!	���$�%�	��	��
!	����
��������
��
������	
���	��	���	�������
����
�������!���	��� �����&�
	$�

· '
��	�������	������������
��	���	��	�������	��
(����	��'
��� �%��������	��� �������

·)�	����*�
�%�
	���	
�����	�$+�����	�������

�
· Click "Open"

· Now you should see the new class in the code window.

To define this class as a test fixture we need to assign the corresponding csUnit attribute now.

Modify the class code like this�

Imports csUnit
<TestFixture()> _
Public Class BasicArithmeticsTests

End Class
The imports statement tells VB.NET to import the csUnit namespace which contains the
TestFixture Attribute.

�����������

Now the big moment has come. We are going to create the first test. Our first test consists of
the following code:

Imports csUnit
Imports MyCalculator

<TestFixture()> _
Public Class BasicArithmeticsTests
 <Test()> _
 Public Sub Add()

��������	���
����������������������� �� �

 Dim ba As BasicArithmetics
 ba = New BasicArithmetics()
 Assert.Equals(3, ba.Add(1, 2))
 End Sub
End Class
Note: The <:Test()> attribute tells csUnit that the Sub "Add" shall be executed by csUnit as a
test.

As soon as you try to build this you will see that the compiler does not like it. There isn't a
BasicArithmetics class.

Let us do something against that: Create a new class called "BasicArithmetics" in the project
"MyCalculator". Initially this class shall have the following code:

Public Class BasicArithmetics
 Public Function Add(ByVal num1 As Integer , _
 ByVal num2 As Integer) As Integer
 Add = 0
 End Function
End Class
Yes, you are right. This Add method will always return a 0.

We strongly recommend you to write tests in such an order that you have seen each test as
failed (red) before you add the functionality to make the test successful (green). That is the
only way to make sure that the program does exactly what the tests demand.

Now the first test and the first part of the program are written. The Solution should build now.
Then we can go on and run the test.

������������ �������� �

Before we run the tests please make sure that the test project is defined as StartUp project. This
is the case if the project name of the test project "MyCalculatorTests" is written in bold letters
in the solution explorer. If this is not the case right-click on the project name and select "Set as
StartUp Project�$�

�"�

�

��
��
�����������������&�
	�	�������
����
�������� �	�
	���������������	��	�$�,���
�#�	���	��	��
��
�
������

· '����	�������������������	����&�
	�����-
����(��
 ��$�

�
�������&�
	���������	�	���$�

· ��
�������,�������.���������/������
�������	�
���

�

��������+������	���	��	������&�
	�
��
�	���	�	� 	��������	�������������	
���
	���
��
�#�
��
�������#��$

�������
����
��������	���

��������	���
����������������������� �%�

���	������+
�����	�����&�
	������	������	�	�	����! ���	��������	���������0���	��	�����	���
���#�����	������1$�

'
��2�	�	�
��	����!���	������+
���$������������ ������	
���
	��	��	���%�����	�����

Public Class BasicArithmetics
 Public Function Add(ByVal num1 As Integer , _
 ByVal num2 As Integer) As Integer
 Add = num1 + num2
 End Function
End Class

����������������� ��������� �

���������
���	������#���#
�����	��������	�	��� &�
	�.���
	�
���	
�������������������	���
�����
��	���$���&�
	�������������������������	 ��	��������	�	����#����������
�����/$�

���������	��������
���	�
���

�

����#��������
��
�	���	�	����	��	������	������� ��������	�	�	������#���������������	���
.	����	�
��	���������
��������
�#���+��������	 ��	�3�����������	������������
������	����/$�

�

�

�'�

1.4 VB.NET’s Implementation Inheritance

One thing to realize is that in VB.NET, all classes are inheritable by default. This includes

forms, which are just a type of class. This means you can create a new form based on an

existing form.

Inheritance Example

Create a new VB.NET Windows Application project and name it InheritanceTest. Add a button

to the form and go to the code window. In the code, add the following class. Make sure that

you add it outside the class for the form!

Public Class Person

Dim localName, localAddress As String

Property Name() As String
Get

Name = localName
End Get
Set(ByVal Value As String)

localName = Value
End Set

End Property

Property Address() As String
Get

Address = localAddress
End Get
Set(ByVal Value As String)

localAddress = Value
End Set

End Property

��������	���
����������������������� �(�

Public Function Enroll() As Boolean
‘check class enrollment
‘if enrollment < max. class size then
‘enroll person in class
Enroll = True

End Function
End Class
This code creates a Person class with two properties, Name and Address, and an Enroll

method. So far, there is nothing about this class that you haven’t seen before.

Now, add a second class, called Student. Your code should look like this

Public Class Student
Inherits Person

End Class

As you can see, there isn’t any implementation code in Student at all. There are no properties

or methods defined. Instead, all you do is inherit from Person.

Now, in the Button1_Click event handler on the form, add the following code:

Dim Student As New Student()
MsgBox(Student.Enroll)

Your form is creating an instance of the Student class. The only code in the Student class is an

Inherits statement that inherits the Person class. However, because VB.NET supports

inheritance, you’ll be able to call the Enroll method of the Person class from within the Student

class, even though the Person class does not explicitly define an Enroll method. Instead, the

Enroll method is present because Student is inheriting the method from Person. Go ahead and

run the project to verify that the message box does report back a value of True.

Is it possible to instantiate Person directly? In this case, yes. For example, you could modify

the Button1_Click event handler to look like this:

Dim Student As New Student()

�)�

Dim Person As New Person()
MsgBox(Student.Enroll & “ - from Student”)
MsgBox(Person.Enroll & “ - from Person”)

Both of these calls to the Enroll method will work fine.

.Shared Members

VB.NET introduces the concept of shared members. Shared members are a way of cre-ating a

member (a property, procedure, or field) that is shared among all instances of a class. For

example, you could create a property for a database connection string. This will be the same for

each class, so you can fill it in for one class and all classes can then see

that one property. Shared properties are most often used in inheritance, so that all objects

created from derived classes can share the same member across all instances of the class.

However, shared members can be used without regard to inheritance.

Imagine that you have an XML file or other persistence mechanism for the student data listed

earlier, and you want to define a method to be able to find a student, given his name, and return

the student object. Rather than the COM model of having a factory to create the object, you

could add the Find functionality as a shared method to the student class. For example:

Public Class Student
Inherits Person

Public Shared Function Find(ByVal studentName As String) _ As Student

Dim Student As New Student()
Dim xmlobj As Xml.XmlElement
‘get the xml object
‘fill in the mName field
‘fill in the mAddress field
Return Student

End Function
End Class

��������	���
����������������������� �	 �

Shared methods are commonly used in the runtime for this ability to create a specific instance

of an object, for example System.IO.CreateDirectory() that will create a directory in the file

system, and return a DirectoryInfo object. The same System.IO. Directory class also provides a

shared method, Move, to rename a directory.

Inheritance Keywords

There are a number of keywords associated with inheritance. Remember that by default, all

classes you create are inheritable. You inherit from classes using the Inherits keyword. The

class from which you inherit is then known as the base class. The Inherits keyword can be used

only in classes and interfaces. It is important to point out that a derived class can only inherit

from one base class.

Forcing or Preventing Inheritance

The NotInheritable modifier is used to mark a class as not inheritable; in other words, it cannot

be used as a base class. If you were to modify the Person class in your InheritanceTest project,

it would look like this:

Public NotInheritable Class Person

If you change the Person definition to look like the preceding line, Student will no longer be

able to inherit from Person.

In contrast to the NotInheritable modifier, there is also a MustInherit modifier. MustInherit

says that a class cannot be instantiated directly. Instead, it must be inherited by a derived class,

and the derived class can be instantiated.

If you changed Person to include the MustInherit keyword, it would look like this:

���

Public MustInherit Class Person

Now, you would not be able to use the following line of code in the client:

Dim Person As New Person

However, you would still be able to inherit Person in your Student class, and your client could

instantiate Student.

Overriding Properties and Methods

When you inherit a base class, the properties and methods cannot be overridden, by default.

Given your earlier example in InheritanceTest, you could not have created a function named

Enroll in Student because one existed in Person. There is a modi-fier, NotOverridable, that says

a particular property or method cannot be overridden. Although methods are normally not

overridable, you can use this keyword only in a unique case: If you have a method that is

already overriding a base method, you can mark the new, derived method as NotOverridable.

If you want to allow a property or method to be overridden, you can mark it with the

Overridable modifier, as shown here:

Public Overridable Function Enroll() As Boolean

Now, your Student can create its own Enroll method. To do so, your client will have to use the

Overrides modifier, so it would look like this:

Public Overrides Function Enroll() As Boolean

��������	���
����������������������� �� �

In the VB.NET IDE, it is also possible to use the drop-down lists at the top of the code window

to override methods or implement interfaces.

There is also a MustOverride modifier. This forces a derived class to override the property or

method. The MustOverride modifier changes the structure of the prop-erty or method. Because

the property or method must be overridden, you do not put any implementation code in it. In

fact, there is not even an End Property or End Sub or End Function when using the

MustOverride modifier. If a class has even a single property or method with the MustOverride

modifier, that class must be marked as MustInherit.

For example, here you have a base Transportation class that has a method, Move, that is

marked as MustOverride. This means that Transportation must be marked as MustInherit. The

Train class inherits from Transportation, and then overrides the Move method.

Public MustInherit Class Transportation

MustOverride Function Move() As Boolean

End Class

Public Class Train

Inherits Transportation
Public Overrides Function Move() As Boolean

‘code goes here
End Function

End Class

Although you can override a base class property or method in your derived class, you can still

access the properties or methods in the base class using the MyBase keyword. This allows you

to call base classes members even though you have overridden them in your derived class.

For example, assume you wanted to have a Transportation class, with an overrid-able function

called Move. Train then inherits from Transportation, and implements its own Move method,

overriding the one in Transportation. However, Train can call its Move method or the one in

���

Transportation. The method CallMethods calls first the Move in Train, and then the Move in

Transportation. The user will see two message boxes. The first will have the text Hello from

the Train class, whereas the second will have the text Hello from the Transportation class.

Public Class Transportation

Overridable Function Move() As Boolean
MsgBox(“Hello from the Transportation class”)

End Function
End Class

Public Class Train

Inherits Transportation
Public Overrides Function Move() As Boolean

MsgBox(“Hello from the Train class”)
End Function

Public Sub CallMethods()

Move()
MyBase.Move()

End Sub
End Class

Related to MyBase is MyClass. Assume that, in your base class, you have method A calling an

overridable method B. If you want to verify that the method B you call is the one you wrote in

the base class, and not the derived, overridden method B in the derived class, call method B

with the MyClass qualifier, as in MyClass.B.

For example, assume that you have a Transportation class that has two methods:

MakeReservation and BuyTicket. MakeReservation calls BuyTicket.

��������	���
����������������������� �� �

MakeReservation and BuyTicket are both overridable. Your Train class can inherit

Transportation, and create a BuyTicket method that overrides the BuyTicket in Transportation.

If you don’t create a MakeReservation in Train, your call to MakeReservation will use the code

in the Transportation class. However, if the code in Transportation.MakeReservation calls

BuyTicket, by default you’ll call the BuyTicket you’ve created in Train. Here is the code:

Public Class Transportation

Overridable Function MakeReservation() As Boolean
‘CheckSchedule
BuyTicket()
‘etc

End Function
Overridable Function BuyTicket() As Boolean MsgBox(“Generic

Transportation implementation”)
End Function

End Class

Public Class Train

Inherits Transportation

Public Overrides Function BuyTicket() As Boolean
MsgBox(“Train-specific implementation”)

End Function
End Class

Now, suppose that you want the MakeReservation to call the BuyTicket method in

Transportation, even if Train overrides BuyTicket. To accomplish this, just change

Transportation.MakeReservation to this:

Public Class Transportation

Overridable Function MakeReservation() As Boolean
‘CheckSchedule
MyClass.BuyTicket()
‘etc

End Function

�"�

In this case, if your client calls Train.MakeReservation, the MakeReservation method will call

the BuyTicket in the base class (Transportation) instead of the overridden BuyTicket (if one

exists in Train). However, it’s important to note that if your Train class overrides

MakeReservation, MyClass will not come into play. This is because you will be calling the

overridden MakeReservation, which won’t include the MyClass keyword.

 Polymorphism
Polymorphism is the ability to change the implementation of a base class for different objects.

For example, if you have a bicycle and a car, both can move, but they do

so in very different ways. They use different mechanisms for movement, and the distance that

each can move in an hour is significantly different. Yet, both a Car and a Bike class might

inherit from a base Transportation class, which could also be used as the basis for a Plane class,

a Train class, a HotAirBalloon class, and so on.

Polymorphism with Inheritance

Polymorphism was possible in VB6 using interfaces, which will be examined in a moment.

VB.NET allows you to perform polymorphism using inheritance. The dif-ference from what

you have done so far is that you can actually use the base class as a variable type, and you can

handle any derived class with that new variable.

For example, examine the following code. The Transportation class contains just one method,

Move. Two classes inherit the Transportation class: Car and Bicycle. Both have overridden the

Move method. The code looks like this:

Public MustInherit Class Transportation

Public MustOverride Function Move() As Boolean
End Class

Public Class Bicycle

Inherits Transportation
Overrides Function Move() As Boolean

‘code here

��������	���
����������������������� �%�

Move = True
End Function

End Class

Public Class Car

Inherits Transportation
Overrides Function Move() As Boolean

‘different code here
Move = True

End Function
End Class

So far, this looks similar. However, notice now what your client can do. It cannot directly

create an instance of Transportation because it is marked as MustInherit. But, you can declare a

variable of type Transportation. You can be assured that any object that inherits Transportation

has a Move method, and you don’t have to worry about what kind of object it is. Your client

code might look like this:

Protected Sub Button1_Click _

(ByVal sender As Object, ByVal e As System.EventArgs)
Dim MyCar As New Car()
Dim MyBike As New Bicycle()

PerformMovement(MyCar)
PerformMovement(MyBike)

End Sub

Public Sub PerformMovement(ByVal Vehicle As Transportation)

If Vehicle.Move() Then
‘do something

End If
End Sub

You’ll notice that the PerformMovement sub accepts an argument of type Transportation. This

sub doesn’t care if you pass it an object of Car or Bicycle type. Because the object being

passed in inherits from Transportation, it is guaran-teed to support the Move method, so the

code will run without problems.

�'�

Polymorphism with Interfaces

Interfaces still exist in VB.NET. In VB6 and COM, they were most often used when you

needed to be able to modify your code without breaking existing clients. You could actually

modify the structure of your classes, but provide an interface that looks like the old version of

the component. This kept existing client applications happy while at the same time you were

able to modify the classes to enhance functionality.

In VB.NET, you can still use interfaces this way. However, interfaces are best used when you

want to be able to use different object types in the same way, and the objects don’t necessarily

share the same base type. For example, the IEnumerable interface is used to expose an

enumerator for a class. Using this interface, you can move through a class using For Each, even

if the class is not based on a Collection object.

You’ll see an example of polymorphism with interfaces using the same example of the Car and

the Bicycle. First, Transportation will be created as an interface instead of a base class, which

might make more sense: The Move method is most likely to be quite different between a car

and bicycle. Then, you’ll implement the Transportation interface. Finally, you’ll call the

objects from the client.

Interface Transportation

Function Move() As Boolean
End Interface

Public Class Bicycle

Implements Transportation
Function Move() As Boolean Implements Transportation.Move

‘code here
Move = True

End Function
End Class

��������	���
����������������������� �(�

Public Class Car
Implements Transportation
Function Move() As Boolean Implements Transportation.Move

‘ different code here Move = True
End Function

End Class

You’ll notice that now, when you implement from an interface, you don’t have to use the

Overrides modifier. In addition, the method definition is followed by an Implements keyword

that specifies which method in the interface the current method is implementing. This allows

you to have different names for the methods in the class that is implementing the interface. The

client code here will be the same as it is when you use inheritance polymorphism.

1.5 Visual Studio.NET Namespaces

Software projects consist of several pieces of code such as classes, declarations, procedures and

functions etc., known as the component or identifiers of the software project. In large projects

the number of these components can be very large. These components can be grouped into

smaller subcategories. This logical grouping construct is known as a "Namespace" or we can

say that the group of code having a specific name is a "Namespace". In a Namespace the

groups of components are somehow related to each other. Namespaces are similar in concept to

a folder in a computer file system. Like folders, namespaces enable classes to have a unique

name or we can say that it is a logical naming scheme for grouping related types. A Namespace

is sometimes also called a name scope. An identifier defined in a Namespace belongs to that

Namespace and the same identifier can be independently defined in multiple Namespaces with

a different or the same meaning. Every project in C# or VB.NET starts with a Namespace, by

default the same name as the name of the project.

�)�

Why we need it

We must add a reference of the Namespace object before using that object in a project. Several

references are automatically added in the project by default. The VB.Net "Imports" keyword is

used to add a reference of a namespace manually.

Example

�� ������� ������	 �

Note: Imports allow access to classes in the referenced Namespace only not in its internal or

child Namespaces. If we want to access internal Namespace we might need to write:

�� ������� ������	�
��������� �

Namespaces are basically used to avoid naming collisions, when we have multiple classes with

the same name, and it is also helpful for organizing classes libraries in a hierarchal structure.

Namespaces allow us to organize Classes so that they can be easily accessed in other

applications. Namespaces also enable reusability.

A class in .Net Framework cannot belong to multiple Namespaces. One class should belong to

only one Namespace. VB.NET does not allow two classes with the same name to be used in a

program.

We can define a Namespace using the "Namespace" keyword. The syntax for declaring a

Namespace is:

�� �	�
��	�
 ����	��������	���� �
�� �� �
�� �������
�������������������������������	������� �
�� �� �
�� �� � �	�
��	�
 �� �

Example

��������	���
����������������������� �	 �

Note: All the classes in the .Net Framework belongs to the System Namespace. The "system"

Namespace has built-in VB functionality and all other Namespaces are based on this "system"

Namespace.

Accessing Members of a Namespace

We can access a member of a Namespace by using a dot(.) operator, also known as the period

operator. The members of a Namespace are the variables, procedures and classes that are

defined within a Namespace. To access the member of a namespace in a desired location type

the name of the namespace followed by the dot or period operator followed by the desired

member of the namespace.

Example

MyNamespace.Class1.disp() 'Accessing elements of the MyNamspace

we can access a member of a namespace in various ways. The following program
shows accessing the element of a namespace in various ways.

�� ������� ������	�� �
�� �	�
��	�
 ���������� �������� �������	����������� �� �
�� ���� ��	�� �!������� �!��������������������"����	������#��	���� �� �
�� �������� ������ � ��	�
� � ������ � ��$%�� �&�������� �����������"��

�
���� �� �
�� ������������
�������'����(���$)!��������� ��) %�� �
*� �������� �� � ������ �� �
+� �������� ������ � ��	�
� � ������ �����$%� ��������������"��� ����

����������������� �� �
,� ������������
�������'����(���$)���	�����!�����������-����) %�� �
.� �������� �� � ������ �� �
�/� �������� ������ � ��	�
� � ������ �����$%�� �
��� ������������
�������'����(���$)0� ������������ ����������

�� �������������"��1����) %�� �
��� �������� �� � ������ �� �
��� ���� �� � ��	�� �� �
��� �� � �	�
��	�
 �� �
��� �� �
�*� �����
 �2�������� �
�+� ���� ������ � ������ �	� ������$%�� �

���

�,� �������� ��� �!� �� �������!������� �
�.� ��������!�3� �
� �������!�����$%�� �
�/� ��������!�����$%����� �������-�	�	4���� ��"����	������4�

�������������� �� �
��� ���� �� � ������ �� �
��� ���� ��� �	���$%�� �
��� ��������
�������
����$%�� �
��� ��������������!������ ��$%������� �������-�	�	4���� ��"��

��	������ �� �
��� ��������
������#�����������������!����������$%� �����"���

1�����������	�	4���� ��"����	������������������� ���������� �� �
�*� ��������	� ������$%�� �
�+� ���� �� � ��� �� �
�,� �� � �����
 �� �

Output

�� �	�
��	�
 �2���	����������������������� ������1��"��������	����
� �� �

�� ���� ������ � ��	�� �
������� �
�� �������� ������ � ��	�
� � ������ �����$%������� � ���������������1

��"����"������� �� �
�� ������������
�������'����$)"����) �5�64
�(%�� �
�� �������� �� � ������ �� �
*� ���� �� � ��	�� �� �
+� � �� � �	�
��	�
 �� �

Nesting a Namespace

��������	���
����������������������� �� �

Nesting a Namespace means create a namespace inside a namespace. A good way to organize

namespaces is to put them in a hierarchal order, i.e. general name at the top of the hierarchy

and put specific names at the lower level.

Example

�� ������� ������	�� �
�� �	�
��	�
 ��������� �������������������	����� �� �
�� ���� ������ � ��	�� ���	������ �
�� �������� ������ � ��	�
� � ������ �����$%�� ��������� �������������

�����������	����� �� �
�� ������������
�������'����(���$)"���"��������������	������) %�� �
*� �������� �� � ������ �� �
+� ���� �� � ��	�� �� �
,� �� �
.� ���� �	�
��	�
 �������� �������������������	����� �� �
�/� �������� ������ � ��	�� ���	������ �
��� ������������ ������ � ��	�
� � ������ �����$%�� ��������� ���

������������"����������	����� �� �
��� ����������������
�������'����(���$)"���"��������������	���

��) %�� �
��� ������������ �� � ������ �� �
��� �������� �� � ��	�� �� �
��� ���� �� � �	�
��	�
 �� �
�*� �� �
�+� �� � �	�
��	�
 �� �
�,� �� �
�.� �����
 �	�������� �
�/� ���� ��� �	���$%�� �
��� ��������
�������
����$%�� �
��� ����������������	���������$%�������� ������-� �������� �

�"����������	����� �� �
��� ����������������������	���������$%�� �������-� ��������

��"����������	����� �� �
��� ���� �� � ��� �� �
��� �� � �����
 �

Output

���

Note: You can not have two classes with the same name in the same scope. In other words,

class overloading is not allowed.

Example

�� �	�
��	�
 �2���	����������������� �
�� ���� ������ � ��	�� ������� ���	���������1��"��������	����� �� �
�� �������� ������ � ��	�
� � ������ �����$%�� � ���������������1��"��

��"������� �� �
�� ������������
�������'����$)"����) �5�64
�(%�� �
�� �������� �� � ������ �� �
*� ���� �� � ��	�� �� �
+� �� �
,� ���� ������ � ��	�� ������ ��"��������������1��� �� �
.� �������� ������ � ��	�
� � ������ ������$%�� �
�/� ������������
�������'����$)"�) %�� �
��� �������� �� � ������ �� �
��� ���� �� � ��	�� �� �
��� �� � �	�
��	�
 �� �

You can avoid this by putting classes with the same name in a different scope.

Example

��������	���
����������������������� �� �

�� �	�
��	�
 �������������������� ���	���������1��"��������	����� �
� �

�� ���� ������ � ��	�� ������ �
�� �������� ������ � ��	�
� � ������ �����$%�� � ���������������1��"��

��"������� �� �
�� ������������
�������'����$)"����������1��"����������) �5�64
�(

%�� �
�� �������� �� � ������ �� �
*� ���� �� � ��	�� �� �
+� ���� �	�
��	�
 ������������ �
,� �������� ������ � ��	�� �������� ���	�������1��"��� ���������� �� �
.� ������������ ������ � ��	�
� � ������ ������$%�� �
�/� ����������������
�������'����$)"���"�����������1�"�������

�������� �����������	������) �5�64
�(%�� �
��� ������������ �� � ������ �� �
��� �������� �� � ��	�� �� �
��� ���� �� � �	�
��	�
 �� �
��� �� � �	�
��	�
 �� �
��� �� �
�*� �����
 �	�������� �
�+� ���� ��� �	���$%�� �
�,� ��������
�������
����$%�� �
�.� ��������������������������$%�� �
�/� �������������������������������������$%�� �
��� ���� �� � ��� �� �
��� �� � �����
 �� �

Output

�"�

Aliases of the Namespaces

Aliases are created when we have nested Namespaces. It is easy to access the members of the

namespaces by the alias. An alias is a shortcut for a nested namespace with a shorter label. An

alias of a namespace is created with the help of the "imports" keyword. Aliasing is useful when

we are working with a large project.

Example

�� ������� ������3�
������#���������*��������������������� ������
�-������������	�� ������������� �� �

�� �	�
��	�
 �������������������� ���	���������1��"��������	����� �
� �

�� ���� ������ � ��	�� ������ �
�� �������� ������ � ��	�
� � ������ �����$%�� � ���������������1��"��

��"������� �� �
�� ������������
�������'����$)"����������1��"�����������) �5�64
�(

 %�� �
*� �������� �� � ������ �� �
+� ���� �� � ��	�� �� �
,� ���� �	�
��	�
 ������������ �
.� �������� ������ � ��	�� �������� ���	�������1��"��� ���������� �� �
�/� ������������ ������ � ��	�
� � ������ ������$%�� �
��� ����������������
�������'����$)"��������-��"��	�	4���1��

"��"����������	�) �5�64
�(%�� �

��������	���
����������������������� �%�

��� ������������ �� � ������ �� �
��� �������� �� � ��	�� �� �
��� ���� �� � �	�
��	�
 �� �
��� �� � �	�
��	�
 �� �
�*� �� �
�+� �����
 �	�������� �
�,� ���� ��� �	���$%�� �
�.� ��������
�������
����$%�� �
�/� ��������������������������$%�� �������-�	�	4���� ��"����

����������	������1��"������������	� �� �
��� ����������������������$%������ �������-�	�	4���� ��"�����

��������4����������	� �� �
��� ���� �� � ��� �� �
��� �� � �����
 �� �

1.6 Summary
In Windows application, Form is going to act as a container to hold various controls.

Check box and Radio buttons are provides the user with group of choices. But check Box

supports multiple choices whereas the Radio button is mutually exclusive.

List and Combo box list the group of items that the user can select. Difference between

these two is the combo has in build place holder for user’s selection.

As you can see, setting up inheritance is not difficult. However, the challenge comes when you

design your components and your object model. Inheritance is quite pow-erful, but you must

intelligently define your base classes to make them broad enough to be inheritable, but general

enough to be useful to many derived classes.

With the introduction of implementation inheritance, VB.NET moves into the realm of

object-oriented (OO) languages for the first time. VB6 had some OO constructs, but the

addition of implementation inheritance, one of the most basic OO concepts, greatly

strengthens VB.NET’s OO portfolio.with the help of namespaces we can include the class

library into your applications.

1.7 Questions for Exercises

�'�

1. Design a window form application for the registration in NOU

2. Explain different fundamental properties & methods of Window forms

3. Explain the implementation of class library in vb.net?

5. Explain the implementation of inheritance in vb.net?

6. What is namespaces? Why we need it?

1.8 Suggested Readings:
Visual Basic Tutorial
· http://www.vbtutor.net/VB2008Book/vb2008me_preview.pdf
· http://www.functionx.com/vbnet/Lesson03.htm
· http://vb.net-informations.com/gui/windows_forms.htm

��������	���
����������������������� �(�

