

Unit 3 Mastering VB Language

Structure:
3.0 Objectives
3.1 Introduction
3.2 Data Types
3.3 Operators
3.4 Decision Making and Loop Structures
3.5 Error Handling
3.6 Classes and Objects
3.7 Summary
3.8 Questions and Exercises
3.9 Suggested Readings

3.0 Objectives
After studying this unit, you will be able to:
 list and explain the data types support by VB .NET 
 list and explain the operators 
 write a program using decision making and looping structure 
 discuss the error handling techniques in VB .NET 

3.1 Introduction

In the previous unit we discussed the concept of Visual Studio .NET and
Microsoft Development Environment. Integrated design environment and
integrated debugging environment that helps the program developers to
develop the application in a convenient way. Some basic concepts and
basic skills required to work with the Development Environment. We also
discussed to develop a simple application in VB .NET environment and to
run the application.

In this unit we are going to discuss the data types, operators, decision
making, looping statements, error handling, techniques supported by VB
.NET platform. Also we are introducing the object oriented programming
concepts in discussing on classes and objects

3.2 Data Types

A variable has a major role in programming languages. Any holder or

container with a name to hold some value is called variable. These variables
are the basic fundamental need for any data processing. Basically the string
or the text variables are simple. Whereas the numerical type comes with the
different size and precision in order to improve the performance of an
application. An earlier version of VB .NET supported the default variable as
variant. If the programmer is not mentioning about the type of variable while
declaration, it will be considered as variant. This variant type holds any
types of data like number or string. It reduces the burden of the programmer
to some extend to decide later. .NET does not support the variant type
because it requires confirmation between the other languages.

The variant type, Efficient though it often was, had two fatal flaws from the
perspective of those who designed VB.NET. First, in some cases, VB had a
hard time figuring out which type the variant should change to resulting in an
error. Second, the other languages in the .NET universe do not use variants
and the .NET philosophy requires conformity between its various languages
(at least on the fundamental issues, such as variable typing). Therefore, the
variant variable is no longer part of the VB language. It has been banished
in VB.NET.

X = 10 and y = 10.3

Here when the value 10 assigned to the variable x, VB understands that this
is the integer type. But the y value has the fractional part insist to change
the type to floating type so here casting is happening.

x = "11"
y = 10

z = x + y
MsgBox (z)

From this example you will get the answer as 21, but before doing this
calculation the casting process is require converting from string to integer.
This interpretation process delays the processing or execution time of an
application. Thus the VB .NET is not entertaining the usage of variant type.
The easiest and simplest data type is Boolean. It can represent two states
that is, True and False. The default value of the Boolean is False. This type
can be used where you want to toggle between states of True and False or
say On and Off. The syntax for the Boolean data type is:

Dim bool1 As Boolean

Another simple data type is the Integer and its larger size, the Long type.
Before VB.NET, the Integer data type was 16 bits large and the Long data
type was 32 bits large. Now these types are twice as big as they used to be:
Integer is 32 bits large and Long is 64 bits large. If your program needs to
use a 16-bit integer, use the new type Short. So if you're translating pre-

.NET VB code, you need to change any As Integer or Cint commands to As
Short and Cshort, respectively. Similarly, As Long and CLng now must be
changed to As Integer and Cint. In most programming, the Integer is the
most common numeric data type. If your non-fractional number is larger or
smaller than an integer can hold, make it a Long data type.

Dim abc As Integer
Dim xyz As Long

The other major numeric type is called floating point. It has similar small and
large versions called Single and Double, respectively. Use it when your
program requires the precision of using fractions:

Dim fract1 As Single, fract2 As Double

VB.NET also has a new Char type, which is an unsigned 16-bit type that is
used to store Unicode characters. The new Decimal type is a 96-bit signed
integer scaled by a variable power of 10. Table 3.1 listing the data types
available ib VB .NET.

Table 3.1: Data types in VB .NET

Visual Common

Language Storage

Basic Value Range

Runtime Type Size

Type

Structure

Boolean System. 2 bytes True or False

 Boolean

Byte System. Byte 1 byte Unsigned 0 to 255

Char System. Char 2 bytes Unsigned 0 to 65535

Date System. Date 8 bytes January 1, 0001 to December 31, 9999

 Time

Decimal System. 16 bytes +/-

 Decimal 79,228,162,514,264,337,593,543,950,335
 with no decimal point; +/-
 7.9228162514264337593543950335 with
 28 places to the right of the decimal;
 smallest non-zero number is
 +/-0.0000000000000000000000000001

Double System. Double 8 bytes -1.79769313486231E+308 to
(double- 4.94065645841247E-324 for negative
precision values; 4.94065645841247E-324 to
floating- 1.79769313486231E+308 for positive
point) Values

Integer System.Int32 4 bytes -2,147,483,648 to 2,147,483,647

Long System.Int64 8 bytes -9,223,372,036,854,775,808 to
(long 9,223,372,036,854,775,807
integer)

Object System. Object 4 bytes Any type can be stored in a variable of type
 (class) Object

Short System.Int16 2 bytes -32,768 to 32,767

Single System. Single 4 bytes -3.402823E+38 to -1.401298E-45 for
(single- negative values; 1.401298E-45 to
precision 3.402823E+38 for positive values
floating-
point)

String System. String Depends 0 to approximately 2 billion Unicode
(variable- (class) on Characters
length) platform

User- (inherits from Sum of Each member of the structure has a range
Defined System. Value the sizes determined by its data type and
Type Type) of its independent of the ranges of the other
(structure) members Members

3.3 Operators

Operators are nothing but the symbols which insist the compiler to execute
or perform specific logical or mathematical operations. VB .NET has huge
number of operators that support to do arithmetic and logical operations. We
are now going to discuss the most commonly used operators.
 Arithmetic operators
 Comparison operators

 Logical/Bitwise operators
 Assignment operators

Arithmetic operator
It is a mathematical operation calculated between any two operands. These
operators can be used in expressions to perform sequence of calculations.
Following table 3.2 shows the various arithmetic operations supported by
VB .NET, you can assume here the variable A holds the value 2 and the
variable B holds the value 7.

Table 3.2: arithmetic operators
Operator Description Example

^ Raises one operand to the power of another B^A will give 49

+ Adds two operands A + B will give 9

- Subtracts second operand from the first A - B will give -5

* Multiply both operands A * B will give 14

/ Divide one operand by another and returns a floating
B / A will give 3.5

point result

\ Divide one operand by another and returns an integer
B \ A will give 3

Result

MOD Modulus Operator and remainder of after an integer
B MOD A will give 1

Division

Comparison Operator
These operators compare the relationship between given string or numbers
and have the value one if the condition is true otherwise 0 for false. String
will be generally compared by taking the character one by one from each of
the string. The table 3.3 is listing of comparison operators supported by
VB.NET language.

 Table 3.3: Comparison operator

Operator Description Example

== Two operands values are verified for its equality. (A == B) is not true.
 If the condition is yes then the result is true.

 Two operands values are verified for its non-
<> equality. If the condition is yes then the result is (A <> B) is true.

 True

 Verify whether the value of left operand is
> greater than the value of right operand, if yes (A > B) is not true.

 then the result is true.

 Verify whether the value of left operand is less
< than the value of right operand, if yes then the (A < B) is true.

 result is true.

 Verify whether the value of left operand is
>= greater than or equal to the value of right (A >= B) is not true.

 operand, if yes then the result is true.

 Verify whether the value of left operand is lesser
<= than or equal to the value of right operand, if yes (A <= B) is true.

 then the result is true.

Apart from these regular operators that are supported by almost all the
languages following are the operators supported by VB .NET.

IS operator: Compares two object reference variables and determines if two
object references refer to the same object without performing value
comparisons. If object1 and object2 both refer to the exact same object
instance, result is True; otherwise, result is False.

Is Not Operator – Also compares two object reference variables and
determines if two object references refer to different objects. If object1 and
object2 both refer to the exact same object instance, result is False;
otherwise, result is True.

Like Operator – This operator matches a string against a pattern.

Logical and Bitwise operators
Below are the listed logical operators supported by VB .Net here we need to
assume that the variable A has the Boolean value as True and the B has the

value as False. Table 3.4, listing the logical and bitwise operators.

 Table 3.4: logical and bitwise operators

Operator Description Example

 It is one of the logical and bitwise AND operator.

And Here If both the operands are true then condition (A And B) is

becomes true. This operator does not perform short- False.

 circuiting, i.e., it evaluates both the expressions.

 It is the logical as well as bitwise OR operator. If any

Or of the two operands is true then condition becomes
(A Or B) is True.

true. This operator does not perform short-circuiting,

 i.e., it evaluates both the expressions.

 It is the logical as well as bitwise NOT operator. Use

Not to reverses the logical state of its operand. If a Not (A And B) is

condition is true then Logical NOT operator will True.

 make false.

 It is the logical as well as bitwise Logical Exclusive

 OR operator. It returns True if both expressions are

 True or both expressions are False; otherwise it

Xor returns False. This operator does not perform short- A Xor B is True.

 circuiting, it always evaluates both expressions and

 there is no short-circuiting counterpart of this

 Operator

And Also It is the logical AND operator. It works only on (A AndAlso B)

Boolean data. It performs short-circuiting. is False.

Or Else It is the logical OR operator. It works only on (A OrElse B)

Boolean data. It performs short-circuiting. is True.

Is False It determines whether given expression is False.

Is True It determines whether given expression is True.

Bit Shift operator
Bitwise operations will be executed on the bits to perform bit operation,
truth table for &, | and ^ are listed below.
 P q p & q p | q p ^ q

 0 0 0 0 0

 0 1 0 1 1

 1 1 1 1 0

 1 0 0 1 1

Assignment Operator
Table 3.5 listing the assignment operators available in VB.NET

Table 3.5: Assignment operators

Operator Description Example

 Simple assignment operator, Assigns
C = A + B will assign

= values from right side operands to left side

value of A + B into C

 Operand

+=
Add AND assignment operator, It adds right C += A is equivalent to

operand to the left operand and assign the C = C + A

 result to left operand

 Subtract AND assignment operator, It

-= subtracts right operand from the left C -= A is equivalent to

operand and assign the result to left C = C – A

 Operand

 Multiply AND assignment operator, It

*= multiplies right operand with the left C *= A is equivalent to

operand and assign the result to left C = C * A

 Operand

 Divide AND assignment operator, It divides

/= left operand with the right operand and C /= A is equivalent to

assign the result to left operand(floating C = C / A

 point division)

 Divide AND assignment operator, It divides

\= left operand with the right operand and C \= A is equivalent to

assign the result to left operand (Integer C = C \A

 division)

 Exponentiation and assignment operator. It

^= raises the left operand to the power of the C^=A is equivalent to

right operand and assigns the result to left C = C ^ A

 operand.

<<= Left shift AND assignment operator C <<= 2 is same as

C = C << 2

>>= Right shift AND assignment operator C >>= 2 is same as

C = C >> 2

 Concatenates a String expression to a
Str1 &= Str2 is same as

&= String variable or property and assigns the

Str1 = Str1 & Str2

 result to the variable or property.

Other Functions supported by VB .NET

 Address Of: This function returns the address value of a given procedure.




Example: Add Handler Button1.click, Addreess Of Button1_click




 Await: Until the awaited task completes it suspend the execution of procedure.




Example:




Dim result as res1 = Await AsyncMethodThatReturnsResult() Await
AsyncMethod()




 Get Type: Returns the Type object for the given object like methods, events,
properties etc.



Example: MsgBox(GetType(Integer).ToString())

 Function Expression: Declares code and parameter of the function that has

lambda expression.


Dim add5 = Function(num As
Integer) num + 10
Console.WriteLine(add5(10))

3.4 Decision Making and Loops Structures

Decision making statements are required for any programming language to
support the programmer to decide the block of statements needs to be
executed when the condition is true and the other blocks will be executed
when it is false. Following are the list of conditional statements supported by
VB.NET
 If ….. Then statement


 If……Then…Else statement


 Nested if statements


 Select Case statement


 Nested Select Case statement



Now we are going to discuss the if construct with an example that
gives an idea about the if Then and the if Then Else statements

Sub Main()
Dim a As Integer = 100
If (a < 20) Then
Console.WriteLine("a is less than 20")
Else
Console.WriteLine("a is not less than 20")
End If
Console.WriteLine("value of a is : {0}", a)
Console.ReadLine()
End Sub

In the above example the variable a is declared and assigned value
with 100. The if construct checks for the value of a is less than 20 if
the condition is True it prints “a is less than 20”. But as per this
example, the condition is false so it enters into the else portion and
prints “a is not less than 20”. Further it comes out from the construct
and prints the original value of a and stops the process.

We will see one more program below that depicts the nested
ifconstruct. Sub Main()
Dim a As Integer = 100
Dim b As Integer =
200 If (a = 100)
Then
If (b = 200) Then
Console.WriteLine("Value of a is 100 and b is 200")
End If
End If
Console.WriteLine("Exact value of a is
:{0}", a) Console.WriteLine("Exact value of
b is : {0}", b) Console.ReadLine()
End Sub

In the above program a and b are the two integer variables declared
locally. Here, the if constructs followed by the variable declaration
check for the value of a is 100 and the result is a Boolean type. If the
result is True then the control will enter in to one more if construct
called the nested if. If the
nested if boolean condition results True it prints the statement on the
console. If the first construct result or the inner/nested if result is
false then the statement come out from the if construct and prints the
original value of a and b variables.

Select Case
This construct allows a variable to be tested for equality against a list
of values. Each value is called a case, and the variable being
switched on is checked for each select case.
Select [Case]
expression [Case
expressionlist
[statements
]] [Case
Else
[elsestatements
]] End Select

expression: is an expression that must evaluate to any of the
elementary data type in VB.Net, i.e., Boolean, Byte, Char, Date,
Double, Decimal, Integer, Long, Object, SByte, Short, Single, String,
UInteger, ULong, and UShort.

expression list: List of expression clauses representing match
values for expression. Multiple expression clauses are separated by
commas.

statements: statements following Case that run if the select
expression matches any clause in expression list.

else statements: statements following Case Else that run if the
select expression does not match any clause in the expression list of
any of the Case statements.

Loop statements
Generally the program starts executing statements sequentially but
there are situation where the programmer wanted to execute the set
of statements for repeated number of times. So the languages
supports by providing various loops construct to support the complex
situation. Here loop statements execute either a single or group of
statements for a specified number of times. Following are the various
loop construct supported by VB 
.NET. 




 Do Loop
 For …. Next
 For Each…Next
 While…..End While
 With….End with
 Nested Loops

Do Loop
This loop executes the single or group of statements until the Boolean
condition is True or it becomes True, also the loop can be terminated at any
point of time using Exit Do statement. Below are the two construct for Do
loop with entry level and exit level condition.

Do { While | Until }
condition Statements
Exit Do
Loop
Do
Statements
Exit Do
Loop { While | Until } condition

Now we will see one example for Do Loop using exit condition. This
program starts the loop by printing the variable “a” with the initial values as
10, and continues until the value of a reaches 20. Here the condition
checking is at the exit level so first time the loop will be executed and
checks for condition to proceed further.
Sub Main()

Dim a As Integer =

10 Do
Console.WriteLine("value of a: {0}",
a) a = a + 1

Loop Until (a = 20)
Console.ReadLine()

End Sub
Output : Value of a:11
-
-

Value of a: 19

For Next
This loop executes for single or group of statements for a specified number
of times, here the loop index counts the number of iterations. This loop can
be terminated at any point of time using Exit For statement.
For counter [As datatype] = start To end [Step step]

[statements]
[Exit For]
[statements]

Next [counter]

For Each loop is used exclusively for accessing and manipulating all
elements in an array or in VB.Net collection.
For Each element [As datatype] In group

[statements]
[Exit For]

Next [element]

You can see the example below, For Each loop statement that reads the
array value one by one and prints the same. This loop continues to work
until it reads entire items from an array.
Sub Main()

Dim anArray() As Integer = {1, 3, 5, 7,
9} Dim arrayItem As Integer
For Each arrayItem In anArray

Console.WriteLine(arrayItem)
Next
Console.ReadLine()

End Sub
Output: 1, 2, 5, 7, 9

While End While
It is yet another loop executes single or group of statements until the given
condition is true. Main key point with while loop is that it starts with the

condition of checking the conditional statement, if the condition results as
false the loop statements will be skipped and the statement after the loop
body will be executed.

While condition [

statements]

[Exit While] [
statements]

End While
Example:

Sub Main()
Dim a As Integer = 10
While a < 20

Console.WriteLine("value of a: {0}",
a) a = a + 1

End While
Console.ReadLine()

End Sub
Output: Value of a:10
-
- Value of a:19

In the above example the variable a is assigned with the value of 10. While
loop starts with the conditional testing of whether the value of a is less than
20. As per this example the condition is True so it starts execute the content
of the loop. It prints the value of a and then the value of a is incremented
with one. When the value of the variable a reaches twenty, then the
condition becomes false and it comes out of the loop and end the process.

With End With
If you take the With End with construct it is not exactly a looping construct. It
does the execution of series of statements that repeatedly refers to a single
structure or object.
With object

[statements]
End With

Public Class student
Public Property Name As String
Public Property course As String
Public Property semester As String

End Class
Sub Main()

Dim stud As New student
With stud

.Name = "Mr.X"
.course = "MCA"
.Semester =

"Five" End With
With stud

Console.WriteLine(.Name)
Console.WriteLine(.course)
Console.WriteLine(.semester)

End With
Console.ReadLine()

End Sub

You can observe in the above program group of data is created using the
same property and it is been referred by the With construct.

Nested Loops
As we discussed earlier nested are, building of loop construct inside the
loop. VB .NET supports this concept with all the loops like Do, While For etc.
Below you can find syntaxes pertaining to nested loops.
For counter1 [As datatype1] = start1 To end1 [Step step1] For

counter2 [As datatype2] = start2 To end2 [Step step2]
...
Next [counter2]

Next [counter 1]
While condition1

While condition2
...
End While

End While
3.5 Error Handling

VB .NET supports two types of error handling through which we can avoid
the termination of program during execution. The broad categories are
 Unstructured error handling


 Structured error handling



Generally error happens during the run time also called as exceptions
generated due to unexpected or abnormal condition during execution of
code.

Unstructured error handling is executed with the help of On Error
statement, generally placed at starting of the block of the code in order to
handle all the errors which can be raised due to unexpected situation. All VB
.NET errors can be handled using Microsoft. Visual Basic. Information. Err
namespace. When the procedure is called the handler will be set with

Nothing. Better to have single On Error statement is one procedure more
than disable other previous handlers defined in that procedure.

On Error statement is used to either, enable, disable or specify to branch to
the location.

On Error {Go To [line | 0 |-1] | Resume Next}

Here Go To line is used to enable the error handling routine, located at the
starting of the line, it may be either label or number. When the specified line
number or label does not occur in the procedure it raises the compiler error.
To avoid the un expected behavior when no error occur we can place Exit
Sub, Exit property or Exit Function just near the line number or label.

GoTo 0: Disables the enabled error handler that is defined within the current
procedure and resets it to Nothing.

GoTo -1: Disables the enabled exception that is defined within the current
procedure and resets it to Nothing.

Resume Next: Moves the control of execution to the statement that follows
immediately after the statement that caused the run-time error to occur, and
continues the execution from this point forward. This is the preferred form to
use to access objects, rather than using the On Error GoTo statement.
Below you can find the situation where and how these error techniques can
be handled.

‘Generate an error if the user cancels.:
dlgOpenFile.CancelError = True
‘Ignore errors for now :
On Error Resume Next
‘Present the dialog :
dlgOpenFile.ShowOpen
‘See if there was an error:

If Err.Number = cdlCancel Then
‘The user canceled. Do
nothing: Exit Sub
‘Unknown error. Take more action.
ElseIf Err.Number <> 0 Then
End If

‘Resume normal error
handling: On Error GoTo 0

Structured error handling helps the programmers to handle the unexpected
errors efficiently and provide support to the programmer to develop
application efficiently and for easier maintenance for the same. Structures
error handling used the Try.. Catch…Finally statement to handle the errors.
The code that is suspected for error generation during execution can be put

inside this block. If this block produces an error during execution It tries to
match with the error in the catch block. If the matches found, the control will
be transferred to the initial line of the catch block. The Finally, exist as a last
statement in the Try catch Finally block will be executed immaterial of errors
found or not. If there this no error match with the catch block the Finally
statement execute to propagate outer statements.

The example gives you an idea about the role of Try…Catch…Finally
statements.

Public Sub TryExample()
Dim x1 As Integer = 5
Dim y1 As Integer =
0 Try

X1 /= y1 ' Lead to "Divide by Zero" error.
Catch ex As Exception When y = 0 ' To Catch error.

MsgBox(ex.toString)
Finally

Beep() ' sound after processing of error.
End Try

End Sub

3.6 Classes and Objects

Class is defined as “A container for data and code. The data within the class
can be accessed with properties. The code is referred to as methods”.

Object is defined as “An instance of a class in memory. An instance is
created using a Dim statement and the New keyword”

The definition of class will gives you a blueprint of a data type. Actually
whenever you define a class doesn’t mean that you are defining a data. It
indicates the content of the object of the class and various operations that
can be performed unit this objects. The data members and the functions to
perform operations on these data are the members of the class. Objects are
nothing but the instance of a class. You can see below the class construct
that can be defined in VB .NET language. It starts with the key word called
class and followed by the name of the class. Inside the body list of members
will be declared and ends with the End Class statement.

[<attributelist>] [accessmodifier] [Shadows] [MustInherit | NotInheritable
] [Partial] _
Class name [(Of typelist)]

[Inherits classname]
[Implements interfacenames]
[statements]

End Class

attribute list: attributes list of the table all the square brackets in the syntax
indicates, it is optional.

Access modifier: Has three types of access specifier like private, protected
and public defines the scope of the class member.

Shadows: Declared and hidden as overload member in the name class.

Must Inherit: Indicates you cannot create object for this class only this class
can be used for inheritance.
Partial: specify the fractional definition of the class.

Inherits: Indicates which class is inherited.

Implements: used to specify the interface of the class inherited from

In VB .NET environment if you observe, whenever you create a form it
comes with Public Class Form1 in right top of the window. The form what
you have started itself a class. Form1 can be name of the class. Whenever
you add a control to the form, you are adding members in to the form class.
When you initiate or start the form VB does the instantiation it is converting
in to an object.

3.1 Creating and Running a Simple Application

As we discussed already the IDE panes consists of three areas, project pan
provides details about the project which was recently used or opened.
Getting started pane gives tips for quick application development. VB
Express headlines pane provides the recent updates and releases about the
VB versions.

To start with the new application development you need to click on file from
the menu bar and select the new project. The new project dialog box will
appear as depicted in figure 2.9.

Fig. 2.9: new project dialog window

Visual Programming

You can see five templates before you; here we are going to select the
Windows Forms application since we are developing windows application.
By default you get the name as windowsApplication1 you can also change
the name according to your application nature and select ok to continue. As
we discussed already the solution explorer will list all the forms and project
of the current application. Now you will get the window with the new form as
appear in the figure 2.10. Here the application title is specified as My First
Program and the project name is given as My project1. Under that you can
see a form1 is listed through which we are going to develop our application
you can rename this form by changing the name of the form through the
property window say “Multiplication”.

Fig. 2.10: IDE with new form

Now we can design our first application to multiply two numbers when you
click on the button which is available on the form. First we will see how to
add a button in the form, towards the left hand side in the new form window,
the Toolbox window appears under the common control you can see the
control called Button. To add this button to the form either you can drag and
drop the control to the form or select and double click on the form to put the
control in the form change its default name to multiply using the property
window. These dragged and dropped controls can be resized later and can
located anywhere in the form according to developer wish. For this
application we also need three more TextBox controls, the same you can
bring these TexBox controls to the form. Two TextBox controls are to accept
input and one more to display the calculated result.

Visual Programming

Now we will see how to add the coding portion in the application. Here the
event decided for calculating or multiplying two numbers are “Click on
button”. To go to the code window either we can do double click on the
button control or through solution explorer you can reach the code window.
If you double click you can see the below procedure appears automatically.

Private Sub Button1_Click (ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

End Sub

Within this block we need to type the coding or the business logic to do the
calculation.

Private Sub Button1_Click (ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles

Button1.Click Dim a, b, c as single
a= TextBox1.Text
b=TextBox2.Text
c=a*b
TextBox3.Text=c

End Sub

Running VB .NET application
Once the coding part is over we need to execute or run the program to see
the output. We can run the VB. NET application in two ways either by
pressing the F5 button or by selecting the run option from the toolbar. For
the above specified coding the result will appear as shown in figure 2.11.

Fig. 2.11: Application output

Now we will see the coding part of this application here three variables are declared as single to
accept numbers. The variable “a” is going to get the value which is received by the TextBox
during the run time. TextBox1.Text is to take the value from the control will be assigned to the
variable “a”. Likewise the variable “b” will receive the value from the control TextBox2. The next
statement “c=a*b” will multiply the values of a and b will be stored in c. Finally we are moving
the calculated value that is “c” to the TextBox3 control. This application can be executed as we
discussed earlier and assume in this example user has given two input as 5 and 4. The
resultant value 20 is stored in the TextBox3 and displayed, this happens when you click on the
button multiply since the calculation part is written in the button click event.

3.7 Summary

 Each variable in VB .NET has a specific type that defines the size and layout of the variable

in memory. 

 Among all the data types Boolean data type is considered as a simple one. 

 Operators are the symbols which insist the compiler to execute or perform specific logical or

mathematical operations. 

 AddressOf, Await, GetType and Function Expression are the special data types supported in

VB .NET 

 VB .NET supports two types of error handling through which we can avoid the termination of

program during execution are structured and unstructured error handling techniques. 

 Class is defined as “A container for data and code. The data within the class can be

accessed with properties. The code is referred to as methods”. 

 Object is defined as “An instance of a class in memory. An instance is created using a Dim

statement and the New keyword” 



3.8 Questions and Exercises

1. List and explain the list of data types supported by VB .NET.
2. Explain the comparison and logical operators available in VB .NET.
3. Discuss the decision making statements with example.
4. List and explain the looping statements.
5. Discuss in detail the error handling techniques.
6. Brief about classes and objects.

3.9 Suggested Readings:
 http://www.tutorialspoint.com/vb.net/vb.net_operators.htm 
 http://support.microsoft.com/kb/311326 
 http://www.vb-helper.com/err_sample_text.html 
 http://msdn.microsoft.com/en-us/library/fk6t46tz(v=vs.71).aspx 
 NOTE 

