BCA Part -III Paper XX: RDBMS **Topic: Relational Algebra** Compiled by: Dr. Kiran Pandey (School of Computer Science) Email-id: kiranpandey.nou@gmail.com Relational algebra is a procedural query language. It gives a step by step process to obtain the result of the query. It uses operators to perform queries. ## Types of Relational operation ### 1. Select Operation: - o The select operation selects tuples that satisfy a given predicate. - o It is denoted by sigma (σ). ### 1. Notation: $\sigma p(r)$ ### Where: σ is used for selection prediction **r** is used for relation **p** is used as a propositional logic formula which may use connectors like: AND OR and NOT. These relational can use as relational operators like =, \neq , \geq , <, >, \leq . ## For example: LOAN Relation | BRANCH_NAME | LOAN_NO | AMOUNT | |-------------|---------|--------| | Downtown | L-17 | 1000 | | Redwood | L-23 | 2000 | | Perryride | L-15 | 1500 | | Downtown | L-14 | 1500 | | Mianus | L-13 | 500 | | Roundhill | L-11 | 900 | | Perryride | L-16 | 1300 | ## **Input:** 1. σ BRANCH_NAME="perryride" (LOAN) ## **Output:** | BRANCH_NAME | LOAN_NO | AMOUNT | |-------------|---------|--------| | Perryride | L-15 | 1500 | | Perryride | L-16 | 1300 | ## 2. Project Operation: o This operation shows the list of those attributes that we wish to appear in the result. Rest of the attributes are eliminated from the table. \circ It is denoted by \prod . 1. Notation: ∏ A1, A2, An (r) ## Where A1, A2, A3 is used as an attribute name of relation r. **Example: CUSTOMER RELATION** | NAME | STREET | CITY | |---------|---------|----------| | Jones | Main | Harrison | | Smith | North | Rye | | Hays | Main | Harrison | | Curry | North | Rye | | Johnson | Alma | Brooklyn | | Brooks | Senator | Brooklyn | ## **Input:** 1. ∏ NAME, CITY (CUSTOMER) ## **Output:** | NAME | CITY | |---------|----------| | Jones | Harrison | | Smith | Rye | | Hays | Harrison | | Curry | Rye | | Johnson | Brooklyn | Brooks Brooklyn ## 3. Union Operation: - o Suppose there are two tuples R and S. The union operation contains all the tuples that are either in R or S or both in R & S. - o It eliminates the duplicate tuples. It is denoted by U. ### 1. Notation: $R \cup S$ A union operation must hold the following condition: - o R and S must have the attribute of the same number. - o Duplicate tuples are eliminated automatically. ### Example: ### **DEPOSITOR RELATION** | CUSTOMER_NAME | ACCOUNT_NO | |---------------|------------| | Johnson | A-101 | | Smith | A-121 | | Mayes | A-321 | | Turner | A-176 | | Johnson | A-273 | | Jones | A-472 | | Lindsay | A-284 | ## **BORROW RELATION** | Jones | L-17 | |----------|------| | Smith | L-23 | | Hayes | L-15 | | Jackson | L-14 | | Curry | L-93 | | Smith | L-11 | | Williams | L-17 | # **Input:** 1. \prod CUSTOMER_NAME (BORROW) \cup \prod CUSTOMER_NAME (DEPOSITOR) # **Output:** | CUSTOMER_NAME | |---------------| | Johnson | | Smith | | Hayes | | Turner | | Jones | | Lindsay | | Jackson | | Curry | | Williams | | Mayes | ### 4. Set Intersection: - o Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in both R & S. - \circ It is denoted by intersection \cap . - 1. Notation: $R \cap S$ **Example:** Using the above DEPOSITOR table and BORROW table **Input:** 1. \prod CUSTOMER_NAME (BORROW) \cap \prod CUSTOMER_NAME (DEPOSITOR) ### **Output:** ### CUSTOMER_NAME Smith Jones ### 5. Set Difference: - Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in R but not in S. - o It is denoted by intersection minus (-). - 1. Notation: R S Example: Using the above DEPOSITOR table and BORROW table **Input:** 1. ☐ CUSTOMER_NAME (BORROW) - ☐ CUSTOMER_NAME (DEPOSITOR) ### **Output:** ### CUSTOMER_NAME Jackson Hayes Willians Curry ## 6. Cartesian product - The Cartesian product is used to combine each row in one table with each row in the other table. It is also known as a cross product. - o It is denoted by X. ## 1. Notation: E X D ## Example: ### **EMPLOYEE** | EMP_ID | EMP_NAME | EMP_DEPT | |--------|----------|----------| | 1 | Smith | A | | 2 | Harry | С | | 3 | John | В | ## **DEPARTMENT** | DEPT_NO | DEPT_NAME | |---------|-----------| | A | Marketing | | В | Sales | | С | Legal | ## **Input:** ### 1. EMPLOYEE X DEPARTMENT ## **Output:** | EMP_ID | EMP_NAME | EMP_DEPT | DEPT_NO | DEPT_NAME | |--------|----------|----------|---------|-----------| | 1 | Smith | A | A | Marketing | | 1 | Smith | A | В | Sales | | 1 | Smith | A | С | Legal | | 2 | Harry | С | A | Marketing | | 2 | Harry | С | В | Sales | | 2 | Harry | С | С | Legal | | 3 | John | В | A | Marketing | | 3 | John | В | В | Sales | | 3 | John | В | С | Legal | ## 7. Rename Operation: The rename operation is used to rename the output relation. It is denoted by **rho** (ρ). **Example:** We can use the rename operator to rename STUDENT relation to STUDENT1. 1. ρ(STUDENT1, STUDENT)