BCA Part -III

Paper XX: RDBMS

Topic: Relational Algebra

Compiled by: Dr. Kiran Pandey (School of Computer Science)
Email-id: kiranpandey.nou@gmail.com

Relational algebra is a procedural query language. It gives a step by step process to obtain the result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

- o The select operation selects tuples that satisfy a given predicate.
- o It is denoted by sigma (σ).

1. Notation: $\sigma p(r)$

Where:

 σ is used for selection prediction

r is used for relation

p is used as a propositional logic formula which may use connectors like: AND OR and NOT.

These relational can use as relational operators like =, \neq , \geq , <, >, \leq .

For example: LOAN Relation

BRANCH_NAME	LOAN_NO	AMOUNT
Downtown	L-17	1000
Redwood	L-23	2000
Perryride	L-15	1500
Downtown	L-14	1500
Mianus	L-13	500
Roundhill	L-11	900
Perryride	L-16	1300

Input:

1. σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH_NAME	LOAN_NO	AMOUNT
Perryride	L-15	1500
Perryride	L-16	1300

2. Project Operation:

o This operation shows the list of those attributes that we wish to appear in the result. Rest of the attributes are eliminated from the table.

 \circ It is denoted by \prod .

1. Notation: ∏ A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME	STREET	CITY
Jones	Main	Harrison
Smith	North	Rye
Hays	Main	Harrison
Curry	North	Rye
Johnson	Alma	Brooklyn
Brooks	Senator	Brooklyn

Input:

1. ∏ NAME, CITY (CUSTOMER)

Output:

NAME	CITY
Jones	Harrison
Smith	Rye
Hays	Harrison
Curry	Rye
Johnson	Brooklyn

Brooks Brooklyn

3. Union Operation:

- o Suppose there are two tuples R and S. The union operation contains all the tuples that are either in R or S or both in R & S.
- o It eliminates the duplicate tuples. It is denoted by U.

1. Notation: $R \cup S$

A union operation must hold the following condition:

- o R and S must have the attribute of the same number.
- o Duplicate tuples are eliminated automatically.

Example:

DEPOSITOR RELATION

CUSTOMER_NAME	ACCOUNT_NO
Johnson	A-101
Smith	A-121
Mayes	A-321
Turner	A-176
Johnson	A-273
Jones	A-472
Lindsay	A-284

BORROW RELATION

Jones	L-17
Smith	L-23
Hayes	L-15
Jackson	L-14
Curry	L-93
Smith	L-11
Williams	L-17

Input:

1. \prod CUSTOMER_NAME (BORROW) \cup \prod CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME
Johnson
Smith
Hayes
Turner
Jones
Lindsay
Jackson
Curry
Williams
Mayes

4. Set Intersection:

- o Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in both R & S.
- \circ It is denoted by intersection \cap .
- 1. Notation: $R \cap S$

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. \prod CUSTOMER_NAME (BORROW) \cap \prod CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Smith

Jones

5. Set Difference:

- Suppose there are two tuples R and S. The set intersection operation contains all tuples that are in R but not in S.
- o It is denoted by intersection minus (-).
- 1. Notation: R S

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. ☐ CUSTOMER_NAME (BORROW) - ☐ CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER_NAME

Jackson

Hayes
Willians
Curry

6. Cartesian product

- The Cartesian product is used to combine each row in one table with each row in the other table. It is also known as a cross product.
- o It is denoted by X.

1. Notation: E X D

Example:

EMPLOYEE

EMP_ID	EMP_NAME	EMP_DEPT
1	Smith	A
2	Harry	С
3	John	В

DEPARTMENT

DEPT_NO	DEPT_NAME
A	Marketing
В	Sales
С	Legal

Input:

1. EMPLOYEE X DEPARTMENT

Output:

EMP_ID	EMP_NAME	EMP_DEPT	DEPT_NO	DEPT_NAME
1	Smith	A	A	Marketing
1	Smith	A	В	Sales
1	Smith	A	С	Legal
2	Harry	С	A	Marketing
2	Harry	С	В	Sales
2	Harry	С	С	Legal
3	John	В	A	Marketing
3	John	В	В	Sales
3	John	В	С	Legal

7. Rename Operation:

The rename operation is used to rename the output relation. It is denoted by **rho** (ρ).

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

1. ρ(STUDENT1, STUDENT)