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he Hall Effect

In 1879, E. H. Hall observed that when a current-carrying conductor is placed in a transverse
magncetic field, the Lorentz force on the moving charges produces a potential difference perpendic-
ular to both the magnetic field and the electric current. This eftect 15 known as the Hall effect.
Measurements of the Hall voltage are used to determine the density and sign of charge carrers m a

material, as well as a method for determining magnetic fields.



In a conductor, the flow of clectric current is the movement of charges due to the presence of an
electric field. If a magnetic field 1s applied in a direction perpendicular to the direction of motion
of the charges, the moving charges accumulate such that opposite charges lie on opposite faces of
the conductor. This distribution of charges produce a potential difference across the material, that
opposes the migration of further charge. This creates a steady electrical potential as long as the
charges are flowing in the material and the magnetic field is on. This is the Hall effect.

Consider for example, a thin flat uniform ribbon of conducting material, which is oriented so that
its flat side is perpendicular to a uniform magnetic field as seen in Figure 1. The electrons are the
charge carriers in this model. Assuming the conductor is arranged with length in the x-direction,

width w in the y-direction and thickness t in the z-direction as scen below:
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Figure 1: Geometry of the Hall probe



The microscopic form of Ohm’s Law relates the current density J = % defined as current I per

cross-sectional area A of conductor and the microscopic properies of the conducting material: drift

velocity vy, number of charge carriers per unit volume n and the average time 7:
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where e is the electronic charge: ¢ = 1.6 x 10 'Y, and m is the mass of the electron. The drift velocity
vq 1s the average velocity of the charge carriers over the volume of the conductor. Each charge carrier
moves in a random way, undergoing collisions with the lattice. The average time between collisions
is 7. Only under the influence of an applied electric field E there will be a net transport of carriers
along the conductor. Ohm’s Law in microscopic form also relates the current density J with the

electric field applied E:

J—oF (2)
where o is the electric conductivity.
Using Newton's second law, we can also write:

ma = F = —¢E (3)

and:
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In Equation (3), d@ is the average acceleration over a time 7.

Using Eqgs. (1)-(3), we obtain:
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When placing the current-carrying conductor in a magnetic field B, the total force has to include

the Lorentz force:
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Assuming the magnetic field in the z-direction, as in Fig.1 and defining the cyclotron frequency
We = %, we can write the three components of the drift velocity:
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With current density .J in the x-direction, the magnetic field will drift electrons from the conductor
along the negative y-direction, leading to a charge buildup and therefore to an electric field £, within
the conductor. When steady state is reached, the drift down along the negative y-direction stops,
clectric foree due to £, will cancel the action of magnetic force and the current density will be strictly
along the x-direction. Using Equation (7) and steady-state condition: vy, = (0, we obtain the Hall
field:

E, = v, B, (10)

The Hall voltage 1s the potential difference across the sample: the quantity you'll measure in this

experiment. It is related to the Hall field by:

Vg = — [ Eydy = — Ew (11)
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From equations (5), (7) and (8), we obtain:
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A convenient experimental quantity is the Hall coefficient, Ry defined as:
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The Hall coefficient is positive if the charge carriers are positive and negative if the charge carriers
are negative. The ST units of the Hall coefficient are: m*/C.
Also related to the drift velocity vy is the electric mobility p, defined as:
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Using Eq.(5) and Ohm’s Law in microscopic form (2), we obtain a very useful relation between the

Hall coefficient Ry and the electric mobility pu:
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The quantity measured in this experiment is not conductivity o but resistivity p = -.



The Hall effect in metals and semiconductors

In order to understand some of the ideas involved in theory of the Hall effect in real materials, it
is instructive to construct a more careful model for electric currents under electric and magnetic
ficlds from a classical point of view. We imagine that the charge carriers move in a medium that
offers some resistance. The resistance is due to scattering between the carriers and impurities in
the material and between the carriers and vibrations of the material’'s atoms. Fach charge carrier
is accelerated by the applied fields but every so often it scatters and loses energy. If we assume
that the average time between scattering events is 7, then we have, on average, a retarding force
acting on the carriers of

. . mu (16)

where m is the mass of the carrier. So under the influence of applied clectric and magnetic fields,

Newton's second law reads ~ ~
dv FioxB muv
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where the velocity ¥ is taken to be an average over all of the carriers.



At steady state, the time derivative of ¥ will vanish. Under the usual convention that B points
along the =z axis, we obtain the component equations for @ by setting the left hand side of Eq. (17)

to zero and rearranging:
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From Eq. (1) we have that .J;, = ngv,; (and correspondingly for ¥ and z components). By solving
the above equations for v, v, and v. in terms of the components of E and B. we get

where

and
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In the expression for the conductivity ¢ it may seem that all we have done is to replace one
unknown quantity ¥ with another unknown quantity 7. But the parameter 7, called the relazation

time, is widely used in discussions of electronic transport in materials, and can be justified in a
] 1
quantum-mechanical context via the Boltzmann transport equation

The angular frequency w, is known as as the “cyclotron frequency”. It is the frequency of rota-
tion of a charge in a magnetic field, and can be taken as a measure of the strength of the field.
The combination w,7 is used to characterize an experimental situation: if the magnetic field is
weak and/or the relaxation time short, w,7 < 1 and our experiment is in the “weak-field limit”:
alternately if w.7 > 1 the experiment is in the “strong-field limit”. A number of materials show
strikingly different behavior between the weak- and strong-field limits; aluminum is one.

In our classical model of the Hall effect with a single type of charge carrier, however, there is no

such crossover between the weak and strong field.



