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DETERMINANT AND MATRICES
3.1 Leta. b, c.d be any f w

our n\'mbem. e
a b Lor Complex, the symbol
C o denotes ad - he

and is called a determinant of sec

ond
of the determinant and ad order, a, b, ¢, d are ¢ alled

= be a5 called s value.

cwared 15 called the principal diagonal and the dia
clements ¢ and £ are situated is called the secondary diagonal

The elements w.hlch’ Iif: in the same horizontal line constilute one row
and the elements ‘which lie in the same vertical line constitute one column
Clearly detcrminant of second order has two rows and two columns and

s value is equal to the product of the elements along the principal i |
minus the product of the elements along the secondary dinz'm'?ﬂ iagona

. 2
Thus by definition 1 ; =18~12=6,
Let ay, @y, as. by by, ba, ¢y, €5, 5 be any nine numbers. then the ~ i
a, a «ay '
By ba by | is another way of denoting

¢y € 3

by bs by by | oy 2]
il Ca €y = l(| Cy ol ' Cy T i
i, e, @y (bacy = ca) —ds (bycy = e +ay by - by P A
Here we sce that +. — and + signs oseur before o, a0 i 1y
respectively.

Rule to put + or — sign before any elemeat Find the sum ol nuanhos
of rows and numiber of columns in which th eclement cons kiered oveur. it
a (+) sign before this element and 1f this sumn

this sum is an even number put < 7
this element. Since @, occurs in the

is an odd number, put a (=) sign before e e
first row and first column and (1 + 1) = 2 = an even mtmher.‘thu. n:\ \
‘sign occurs before @y, Since az OCCUIS In the first row and second column
and (1 + Z)' = 3 = zin odd number, thercfore () sign oceurs betore d;
(A) is called the expansion of the detcrminant along ity Hiesbiow
' ay dy th

Expanding the dertcominant by, by I
<) 53 “a

along the second row. we have

N



a @ & - aa|_,lea
b. b) b B—bl G 6 Q'b! ¢ € M & &
O rs ~ by laycy = ase,)
= = b, (@yey~ @¢y) + By (@101 = @x0y) = Dr (€2 = axc,

= - byayey + by + baaycy = baayey = byayc; + byaye
= aybscy - @ybycs — B3y + Babrey + GabiCa — aybac h,
Clearly value of the determinant obtained in (A) and (B) are Naine, 1,

fact same value will be obtained when the determinant is exparidey along
s or column. .

e 'l‘;:udly an clement of a determinant is denoted by l:lﬂlet With tuy

suffices, first one indicating the row and second one indicating the Columg

in which the element occurs. Thus the element of the ith row and jth colym,

of a determinant 1s drnoted by aj.
32 Determinant of 3rd order :
\du apn ¢n|
The symbol A = |ay, an ay
ay  ayp ay
is called the determinant of 3rd order and its value is equal 1o the
number :

a a
an an +(-1)'*2a,, @) an
@y @y “ | gy ayy

{-1 )l . '0"

HEt oty 0 22

@y ap

8y, ay, <kl
(1) s called the expansion of the determinant along its fi

| irst row, Each

clement of the first row has been multiplied by the de::rminlm of second

order which is obtaiped by leaving the row and the column passing through

that clement. It is started A
Nmu“n‘”": v:! from the first el:ment and sign is alternately

@ an
a3 4y

~dy

.
+a|,|

A=(p 4y a
=(=1)*2g, | T2 9y
Ay ayy

apy ap
Gy axny




T

ay an
fdy ayn

ay, a“

o
I Ay
Ay Ay

) ay
That means if the element ay; be in the ™ row ung 1 cotumn then 1o fix

pasitive OF negative sign we should multiply it by (- | Yo

- Ex. 1. Find the value of the determinant

L

“dy

X

| 2 4
A=]3 4 9
2 1 6

Sol. Expanding the determinant along the first row

4 9 <} 3 4
A"I 1 o|‘2|2 6 *‘Iz II
=1(24-9)-2 (18- 18) +4 (3 -8)
=I5-2x0+4x(~5)=-5
Ex. 2. Find the value of the determinant

3 I 7
A=]|S5 0 2
2 5 3
Sol. Expanding the determinant along the second row,
1 7 37 3:-3

=-5/1-35+0(9-14)-2(15-2)
=160-26=134 : _ |
Note : Since § is in second row and first column so, the sign before 5
is (=124 1= (=1)* = —| (minus). Similarly the sign before O is + (plus) and
that before 2 is — (minus) :

3-3. Minors and cofactors :
In the determinant
ay aya a3 (i)
A= oy aza an
as, axa axn

ing through the element a;; an
the second order determinant thus obtained is called the minor of a;; and it is
by M;; Thus we can get 9 minors corresponding to the 9 elements.

For example, in determinant (i)
s 4y
az; au

= My,

The minor of the element @ =

ay 9o I.Mn

The minor of element a3; = I as O3




{0 erms of the notation of minors if we expand the determingn "

the first row. then,
A =(1|
'ﬂnlM\|‘°|2M!7"“"M‘-"

Similarly expanding A along th second colurpn. We have,
A =-apMp+ anpMy - anMy i )
Cofactors : The minor M;; multiplied by (~1)" */1s called the cofacy,
of the element a;;
if we denote the cofactor of the element ajj. by Ajj, then

Cofactor of @y = A= (-1y+ Mj;

) lay My + 1) fay My ¢ (<1 Yy M,,

ap ap

Cofactor of the clement ay = Ay = (-1 * ' M =~ | 0 5

a, ap
ay an

So the cofactor of an element ajj = (=1)'*J x the determinant obtained
by leaving the row and the column passing through that element.
In terms of the notation of the cofactors.
A=apA) +apAp+apA,
A=ay Ay +apAn+apAn
A =ay Ay, apAy +apAg,
Also  ay Ay +apAn+apAp=0
ay Ay + apAy + ajAy =0 ete,
Therefore, in a determinant the sum of the products of the elements ¢
i fowor column with the corresponding cofactors is equal to value of %
determinant. Also the sum of the products of the elements of any row ™

column with the cofactors of the correspondi other ™
Aol ponding elements of any

Cofactor of the element anSAn:(-])]*zMn:-




EXAMPLE

 Colved Examoles

EXAMALEL. Pvaluatethefellowing determinant UAMMES, Show that

Pl' 'l 1
48
| 0 cosx siny|scos(rs )
- ° !
SOUTION, mmmap‘j 3 l‘“"x -l }
J
2305 4u(-2) 1548223 SOWMON, Wehave 0 cusx sy
DUAMPLE2. Find the value of the determinantof thematrix fiax cos)’
1 ’] Onexning e dteming org b o,
As|2 31 We el
111 ltocxmvlﬂ 0;: y
L
9 3] siny o) sin sy l(uu (1)
SOLUTION. W have A‘|2 } ]‘ “msmylmlgny.mﬁy)
]
i1
' DXAMALEL Show that ! 10x 1 ety
WW“W‘WW&!MW o 11 1
‘B 2 3| I 1 ]
I Zr I3 SOUMON. WeleLHS.« | 1 1'J
| 1 14

L5-1-20-04302-9)0 1
Aoy and - e e determi,




we get
1 SOLUTION,  Cilves a, Iy,  sw in AR therefore,
«|1 gren2h
| ; » gsc-s0
»
On expanding 1 Opernting R, -+ Ry + Ry - 2Ry we 38t
get ing MMM‘muﬂ!ﬂunmw o} xs2 xod |0 0 escod
0 o2 x+3 uu-!nz x+3  xsb
») 0' A {
0 ’l 1 J‘°| J vl 2od rec| |3 PUL I Sl
EEVE B TS 0 0 0!
EXAMPLES. Without o et Loz xe3 xetl=0
bt ¢-a a- lred 244 X
~@ a-b b-c«0 EXAMPLE B, Prove that ,
~b b-¢ ¢-a a b ¢ (3 1 3

SOLUTION. W have

b‘f (=0 - 0 t~a @
-t a=b b-c|= a-b B-c¢
b b-¢ c-a b=¢ c-u

(w C, "Cl’cz‘Cz.Wtsel)

o*

SOLUTION, We have

[
lﬂl-£

ot M c’.-ﬂc’l b o«

o v
-M“b)(."u".)

v &

1
b

1

b ¢ 1
3oy c’\- «abela ¢

S, mm:hgwm s J W ¥ &
e be bie t 1 1/
*a® ca cialn0 Now again, JA| - abe b ¢
a’d® ab a+ !dz B A
SOLUTION, Consider Applying C - C; and C; -y, we get
b’ be bec] [P be bec h o 0
c%a® @ cea -ﬁrzaz @ ¢+a :abclu b-a (-a
B2 ab a B ab atﬂl . l;:a:);—az e
(Multiply R, by a, Ry by b and Ry by ¢} °°“P“""‘3°‘°“3“_ n “’:‘_‘;‘1’“
: b%? abe ab+ce ‘d"[bz_az 2
22 i
v~ A - bl (b-a) (& - a2) - (1 - (e -2l
W ol avk nabz[(b-a)(c—n)((cbn)-tb-a)}l
(Take i out from € and C) » abe(b-a)(c ~a)e +a=b-2)
abcnbtlk : ab«m{ =abc (@a=b) (h=c)e-a)
w—ioh 3 ““"‘ EXAMPLE S Prove that
Pb Ve a+bi e a b
b 1 ab+be+ca ¢ bies2a b I.:(ubuc"
~abclea 1 beeabe ¢ a c+a+2b
jab 1 abscat at+b+2 a b |
‘°P"“°°3"C3‘;Cl)l | sowmon mw-r ¢ bresd bu!l
- a4 cHl+
«abe(ab+be scalfea 1 1 . ¢
P Applying Cyand C Gy we e
= abclab + be +ca)x 0 [Na+b+c) 4 b |
=0 »|Ya+bsc) bice2a b
EXAMPLE 7. Ud,b,cmhmmm 2a+bec) @ cra+2
+1 x+2 x+a I\ a b '|
+3 x+3 x+bje0 =xabboc)ll bre+da b

E

43 244 x+¢

crasdl

h o




L L P TSI ——

] ‘ )
S "I Deced s
C ) T
O cxperinyg Srermirusr @reyg o fre caaer - g
.",.__.”-c [
] gebet

cNeeboiashoil s lagsdec?
DUMLE 10 Prowe that
1e 1 1
1 1ed 1 eadedtelels]
1 5  Ss¢ « b e
Opesatng €, —C, ~Cy a0l Gy —C; -Gy we e
e 1 t) |8 0 12
1 16 1 =0 & I
i 1 1l-c < =t J+¢
= a{hl ) -(~c). 1) = HOL ~c)—(~CB]
malbekoc)-ic rak-bom-

‘*:AE-EQE
e 2 ¢

a-b-¢ = e
% bc-sa D
- x c-a-b
SOLUMON. Opesacng & — 7y « By - By e
g-b-¢ X b
2 bc-a B
x X ¢-c-b
g-bec g-b<¢ avb-c
= » b-c-¢a B

x x ¢-g-k
(Taking (2+5+¢) ox Eom R;)

cla-bect

-(d-boc]’
EXAMPLE 12 Show that

e b 3
a-b b-c c-asa P - -2ake
bt cva a-b

SOLUTION. Operating R; —» By - Ry 20d By — Ry « By, we 50
[ b ¢

= - -t -2

geb+c avbec a-bres
M(vb«)uﬁwk,nd(-l;im:ﬂ;)

ks )
o-lgesdeci® ¢ & Bt ' By
goh | i - N - L i P
elgebotiih et o -5 -

wigedei r"'--“ [ I S
'for"-(:-h
1AM 1) Prowe thet

P
& Vo1 ke 1o V.F
“« W S

P - £
e+l r -
& - .=
T -1 -
& - %
s - -
- - - e

el - -
-‘;‘:’:"0' ";-- -
-+l ¥ -2
- .; -;
- -
:f‘--.!’v_“'-:‘,: el -
- -
3 ¥ -}
3 B ~=1

e b

MMMM qer rop p-q=3p g r
”' L B .o’ x s




: i I T ash
= IQP P"q-zr PQP POQ
.‘X X+ ,F ey X+

NowlmMnac,-.c,-cl,,,,,F

@ a+h
=2 p p4q
2 X X+

Awlm C;—Oca-g.mm

a b a b ¢
=2lr P q = P9
F X Xy

_m.(ﬂyhmdmmlhemlum)
x o 1ex”
mulf&y.lmaldwbwnlb y: 1eyda0
s 2t 1ed
Show that xys « -1 (ANDHRA-199, 2015, ASSAM-1959]
x 2 142
SOLUTION. Given y ¥ 14y%<0
[ g 8 1ed
x 21 |x 2 2
= y F U+y ¥ =0
s Az 24
[Take x, y, = oat from Ry, Ry and Ry respectively from
the second determinant]
1 x & ’l x
= 1y Ylixoal y ¥i=0
12 88 1z 8
h x 2
2 1 ¥ )’luOm):o
1 2 z"

= (x=y)y-0(z-2x).1+x07)=0

= (1+x1)=0
(Because x, y, 5 are all distinet, s0
x-y20y-2202-x20)

= rm-l
EXAMPLE 16, Show that
+ef a* b
c+a) b e
kl#b)’ a
=(a +b* ¢ )@+ b+c)(b~c)e-a)a~b)
(bec) a® be

Let A=fe+af B a
a+b ¢ ab

Appilying C, €, -2, , we gt
s vat @ b
-Fon’ob’ ¥ o«
r‘ob’ot‘ ¢ a
Operating G, -+ €y + Gy, We get
1 o be!
NPLRY ST )| W cal
| ¢* alﬂ
Operating Ry — Ry - Ry dnd Ry - Ry - Ry
1 & k|
-(a'vbznzl b -0® (ca-)
E cd-a® (abebe
g a bcl
w(@?+b o) (b-adc-a)0 bea -
P c+a -q

1
s(a’ob’rcz)(b-n)(c-a) bea -:l'
c=b c-q

Ry = R~ Ry, we get

=

1 o
b+a
0 1

Expanding slorg first cohuma, we get
A=(a? + 5% o) b-a)(c-a)lc=b)asb+c)

EXAMPLE 17, Show that
+b bre c+a b e
b+c c+a a+b=2b ¢
cta a+b biel e a
SOLUTION. Let A=|b+c

bec coa
(+4 a0+
c+a ath b+c

Mmc‘ "’C""Cﬁ’Cg,mv(
a+b+c) b+ec c+al
da+bac) cra at

Navrbec) ath bic)

a+b+c) -a -
=2a+b+¢) -b -¢

la+b+c) -c -a

=(a® + b +*)(b-a)(c ~a){c-b)

a+b

+b+¢ a b
-H-l)(-l}ﬁvboc b j
|

+h4c ¢

Applying €y - €, -C;-Cy , we get




l e !dloux,y.:mhmnc,,c,('ampuaMm
«2p b
E X 3 hyesf o = \
Applyieg Cy < G, we gel A 4 sy
r ¢ b ¢ ml 2 ¥ Ir»,)"l
-- 'b g ¢ -2 ¢
c b c b y+2f & o |
Dawing G+ %) P vt S
ﬂ,_”',“_&v«uefmmmn)mwmqmwm f >
terms respectively of a geometric progression, L e (3
show that |
loga p 1 k”']’-lz 0 S
logh g 1=0 - 0 (z42F -y 2 I
loge » ll P’-(hy)’ xz-(xwy)’ lxoy}’{

SOLUTION. Copsider the terms of G, R which are :

e A AR AR, .. Operuting Cy -+ €, ~Cy,Cy =Gy -Gy we gt
a-T,-AR’" yesex)ysz-x) 0 = |
bar.-m" - 0 (sex+yMz+x-)) IJJ
‘=«r’,mr-l fnny)(l-t-y) (sex+y)z-x-y) (x+¥F)

T :] Sop ARP"! pll ‘:jn(nyu)mmmfm\qmczud\.m
Consider (logb ¢ -logAR"': q1 yz-x 0 2 |
loge v 3 llogAR™ r ps(xey+2l 0 sex-Yy y
JogA+(p-DlogR p 1 gex-y $-X-Y (x~y)7
=llogA+(g-DlogR q lJ Operating Ry <» Ry - Ry = Ry, we get
logA+(r-DlogR
" ‘y.l-x 0 °
logA p 1l [p-Niegk p pelxey+sB| 0 zex-y y
=logA g 1|+[lg-DlogR ¢ 1 9 2y
gA r 1 (r-1)logR 1 2ed D w'
(I :1 mecjdle%‘CQ*(q0€1|wew
~log A0+ logRlg S
8 LA |y01 X‘/y le
=0+logRx0=0 =(x+y0:)2ly2/z 14X f'
EXAMPLE 19. Show that 0 o
'.)] xy x l denl-mw
xy (x+8)? = -Mx«yol)’ A—(x*y'z)zhy'y;x 12/)l|
xs o xey) /x 2ex|
p,,f Xy o -(x+y4z)’2x)1lyoz)(:*x)-xy)!
SOLUTION. let A= XY e ;8 :(10y+8)21v(ﬁ”2*ﬂ]
X2 e (x+Y) pzxyz(xtyﬂ)z

Operating R = ¥Ry, Ry ~ yRy, Ry - =Ry, We gt
dy+sf Xy P1 )
aetl p? yixen? Y
I yib slx4y




Evaluate the following determinants. (110 7)

Y T

g oo -|In:1 it‘-.nl x-1
snll  cos

|

el x-1

106 12 1
s Iy 418 ¢ 10
s o 21 2 3
31 -4

vl 2

11

Write the minor and co-factor of each element of
the following determinants and also evaluate the
determinants in each ease. (8 to 11):

SEEIEE

10 10 4
:c.kla n-LS-1
0 o1

}ul x+2 x+4
12, Evalute x45 x+6 x+8
r:d x+10 x+14

a )

13, MumF b j
1 ¢
+i x X
4. Enlune,‘x X+h xJ
. X X Xti
4 A aQ
15. Bvaluane [‘b ¢+a bJ
4 c a+

| x x*
16. Provethat 1 y yi=(x-y)y~-2)(s~x)

{

L 8

17, Prove (hat

¥ g

L
3
= 4a'the
_"l
x ¥

-a
M -

ac

y yJ “;.(x—y)‘)‘ 5
. ¢ o

0 pmmofdctamlmﬂ"v
y+E X

g4x 3 ;‘1-(‘“")"’)(""}2

xey ¥ 3
20, Using properties of determinants, prove that

b-C b} I
[2& b-c-a 2B .(aob+¢)3

s~ x){xy+ ysszx)
18, Provy that

rove that
19. :

2 x c-a-f
21, Solve the following determinant
x-2 2x~-3 -4
-4 2-9 3x-16/=0
-8 2x-27 Jx-64 ,
22. Prove that using properties of determinants
1+a’-* b g
2h ].azvbx 2
2% 20 1-a*-b

.(IQGIsz)}

23. Prove that

' lop.r‘

y ¥* 1epr| =1 prys)ix - y)(y = 2)(z-x)

r 22 lepd (ANDHRA 1999, ASSAM 1593

24, Prove that using properties of determinants
da -a+d -a+e .
<bea 3b  <be¢l=Ha+b+c)(ab+be+ca)
<+a <+b %

25, Prove that

ina cosa cos{a+8
W cosp cos(B+8)<0
siny cosy cos(y+8)

12. Applying By — Ry~ R, and R, -+ R, - B
CJ-OC’-CIdcz—OCz'CI
We get value of et = < 24
l&mlﬁk,-okz-&m&-ok,-kl
r expansion, we gef the required
l‘.mk,akpnzfzj ‘ o
C;-'C,-CPC’-OCJ-CI

e -

15. Applying B, - Ry + R, - R, and expanding,

16. Applying By ~» By - Ry, Ry + R, -R,.

17. xingu‘c:nh.coommonfromﬂm,mondandlhin!oolumnmd
Muwmlppinng&)-tkpklmdkg-bkn .

- g first, second and third rows of the detecminant by
iHiEspectively.andthusApplying C, -5 C, ~C,,Cy G5 -C)



MATRICES

Topics to be discussion

= define the term matriox;

= add two or more hMaimices;

= mmltply a mairix by a scalar;

= mmltply tene biatrices;

=« find the mmverse of 8 square matrioe (if it exisis); and

= mnse the mverse of a sgoare mamx in solving 3 system of linear equations.

We define a matrix as follows

Def: A m «n matrix A is a rectangnlar array of m » real {or complex
mumbers) arranged in m horizontal rows an 7 vertical colomns -

-
I"'&” Jya ﬂ{l, ......... [F.
iz e g . als
A= a, . @y e ai, ith row
A1)
f.ll [ -ﬂ'_'!. ......... [ - A
Jith
Column

As it is clear from the shove definition, the foh row of A Is (@, a; ... d,)
(1 =i =m) and the jih cohmmn is

We also note that each element a, of the matrix has two indices : the row
index f and the column index j. ayis called the (7j rh element of the matrix.
For convenience, the Mamrices will henceforward be denoted by capital
letters and the elements {also called eniries) will be denoted by the
corresponding lower case latters.



The matrix in (1) &5 often wntten in one of the following forms -
i:rair'jl’;ﬂ:{ﬂif}_, A_:{'ﬂ'm;l..:. WA:{EII}-':.
Withi =1,2, .. mandj=112, ..., n

The dimension or order of a matrix A is determinad by the pumber of rows
and colomns of the matmx. If @ matriz A has m rows and » columns we
denote its dimension or order by mxn read "m Gy a”.

Fnrumple.A=E ﬂjsal.czmmuu:l ‘; i sazss
order mainiz.

Wote a that an m = » matrix has mn elements.
Type of Matrices

1. Square Mairiz : A sqmare mairiz is one in which the number of rows
is equal to the number of columns. For instance,

s 1 § 3
~1 & 2 5 7 8

|
‘"‘=[n ﬂ.B=E zgl.c=3 6 11 0
7 3 0 —1 8 7

are sgoare Matrices.

If a sguare matris has & rows {and thus # columns), then 4 is said tobe a
square matix of order A

1. Diagomal Matrix : A square matrix Afay] .+, for which a =0
for i # j,is called 2 diagenal matriz.

For instance,
g [weos
D=|(0 -2 0| andE
0 08 0 030
0 005
are diagonal Mamices.

If A = [ay] ax » I5 2 square matrix of order a, then the mumbers ay,, &
.. iy A8 Called diagonal elements, and are said to form the main
diagonal of 4. Thus, a square matris for which every term off the main
diagomal is zero is called a diagonal mairis.

Mamripes -1

il



Algebra -1 3. Scalar Matrix : A diazonal matrix A = [ay ] .« » for which all the terms
on the main diagonal are equal, that &= gy=kfori=] and ay=01farizj

iz called a scalar matrixz.
For instance
—5 0 0
H=| o  —s rﬂuml[-ﬁ g
0 ] -

are scalar Mafrices,

4. Unit or Identity Matrix - A square matrix 4 = [ay o, 15 said to be the

nnit matriz or identity matriz if
ay= | 0 jfig
1 ifi=]

Note that a unit matrix is a scalar matriz with is on the main diagenal.
We denote the unit matrix having » rows (and a columns) by In.

Far example,
1 0@
1y = [1], |2=[E g] and[_t=|ﬂ 10
01

5. Row Matrix or Colomn Matriz : A matrix with just one row of
elements is called 3 row matriz or row vecfor. While a matrix with just
ane column of elements is called a colume matriz or colomn vector.

3
Forinstance, A =[2 5 -15] is a row mairix whersaz B= |5
T

is A column matrix.

4. Tero matriz or Null matriz : Anm « 7 mamx is called a zero matriz
or mull matriz if each of its elements is zero.

We wsually denote the zero matris by Ox « o

00 0
ﬂ,,;-[ g] and 03,3 = |0 0| are example of zero matrices,
oo i
Equality of Matrices

Let A= [a]wen 28d B =] B].«, be two Matrices. We say that A and B

are equals if
I. m=r, Le, the mumber of rows in A equals the mumber of rows in B.

-



1. n=s5 ie, the pumber of columns in A equals the number of
calumns in B.
i, ay =bgforl=12,......mapd;=112 _....¢

We then write A =B, read as “matrix & is equal to B™ In ather words,
two Matrices are equal if their order are equal and their cormesponding
elements are aqual.

e+l
Iy—T7/
B = l::l';l Find x and y 50 that A = B,

Example 11 Lot A and B be two Matrices given by & =

Solution: Both the Matrices are of order I x1. Therefore, by the definition
of equality of two Matrices, wehavex + =4 -vand 3y -7 =
r—3 Thatis,x+y=1 andx— 3y=—4. Solving these two
puations. We gzt x= 12 and ¥ = 32, We can check this
salution by substinrtion in A and B.

_ 'E]” [
gk -

a=* G]
() [—5,."2]

Transpose of a Matrix

Definition: Let & = [8y] mx o be a matrix. The transpese of A, denoted
by A’ is the matrix A" = [ag] u x o Where by = a; for each i and j.

The transpose of a matrix A iz by definiticn, that matrix which is ebfained
from A by interchanging its rows and columns.

ey _[-3 2 8
So.ifA= [0 7 2] then
its transpese is the matrx
—3
) I 1 E]-
5
Symmetric and Skew Symmetric Matrices

Definition : A square matrix A =[] x ». 15 52id to be symmetric if
A'= A itis shew symmetric f A'=-A.

e -

Mammices



For example A = [_!1 _21] is symmetric and B = [g _g] is 3 skew —
SYMMETIC mAtns.

Check Your Progress 1
1. Constructa 3= I mamx A = [ay] 2 « : Where elemenis are given by
@) ay-3G+3F ) & 0
3 i x _[Zx+y z—¥
2 Findxywhen[; 7]=| ] : I
3 a b cand 4 such that
[aa—b 2e+4d] _ [5 3]
a—b Za+dl 112 150
4. Find the ranspose of following Matrices and find whether the mafnx is
sYImmetTic oF skew symmetric.

@ a= 27 wma=[3 ]

L1} -1 3
© A= [ - :;]
3 5

1.3 OPERATION ON MATRICES

Addition

LetA= [ay]p-s andB= [by],., be two Matrices. We say that A and B
are comparable for addition if m =rand n =3 Thatis, A and B ars
comparable for addition if they have same arder.

We define additien of Matrices as follews :

Defimition - Let A =] ayluss 284 B = [y Jaun be two Matrices. The sum
of A and B is the m =« n matrix C =[¢,] such that

Cy-ay. By  (l=igmil<jen),

That iz, C is obtained by adding the comesponding elements of 4 and B, We
nsually demote &by 4 + B.

Hiote that

A+B=[Cdaen = [0y = By Tuca




0 01
3 ¥ 5

SR R R IR

['I]+l 0+2 1+3
I—1 Z2+0 5+2

[121-
2 27

For example, if A = ] mﬂ]}:[_i g g] then Marrices

It mmst be poted that Matmices of different orders cannot be added. For
ipstance,

_[E & _ |5
a=[; _j| andB =[] Camnot be added
The following properties of matrix addition can easily be verified.

1. Matrix addition is commutative. Thatis, if A and B are two m = n
mairices, then
A+B=B+A.
1. Mamix addition is associative. Thatis, if A, B and C are three m < n
mafrices, then

(A+B)+C =A+(B+0)
j. If Afay]= isan m=n matrix. then
A=D_ =0 . tA=A
. Wwhere O ., is the m=n oull matriz.
4, IfAisanm x »matrix, then we cap find an m « a1 matrix B such that

A+B=B+A =0 qua

The mairix B in above propenty is called “additive inwerse’ or pegafive’
of A apdisdenoted by — A,

Infact, if A = [8y] mus theh —A = [-2y) mea
Thus, property 4 can be written aq

A+(-4) =(-4) +A =0..
We can pow define difference of twro Matrices.

Definition : Let A = [ay] nee a0d B = [8y] me toro matrices. We define the
differemce A — B to be the m « » maimix 4 + (—B).
Wote that A — B is of dimension m=<n and A - B = [a;; — by 3

TEM



e B

4—-2 =145 6+13
then4-EB=
-7 B—-0 3-8 |—.-! ] —b

Scalar Multiplication

Definition : Let A =[a, ],,., be a matrix and let K be a complex. mmber.
The scalar multiplication KA of the matrix A and the number K (called the
scalar) is the m=n matrix KA [k, ] .,

R

Far example, let A={=2 0
L 5 1

12 4
FE=4thenkA=4A=|—0 0
L2 A

, ] 1 173
andilk:%_lhuntﬁ:—ﬂ: —2/3 0
' 5/3 1/3

Mote that if =1, then(-1JA=-A

This is ane of the properties of scalar puldplication. We list some of these
properties withaut proof.

Properties of Scalar Multiplication

l. LetA=[a]u.. beamatrix and let &, and k; be two scalars. Then
M (f+E)A=FA +E A and
W &EA)= (R BA

2 LetA=[a] 4., 20d B =[h] .., betwo matrices and let & be a scalar.
Then
E(A+B) =kA+kB.
Mnltiplication of two Matrices

Let A =[ajj] s« and B = [5if] 7., ke two matrices. We say that A and B are
comparable for the produoct AB if m =, that iz, if the pumber of columns
of A 15 same as the mumber of rows of B.

-



Definition : Let A =[] mes 20d B = [By] axp be two matrices. Their Marice: -.
product AB is the matrix C = [¢y)] wep such that ¢ =a, by +
B byt ey t by for i<i <
m, 1 =j<p MNote that the order of AH is mxp.

30
a2 37 _
Example2:Letd=[ % ] .amna-l_z2 i‘
(btain the product AB.

Solution : Since A is of order 2% 3 and B is or order 3 2, therefore, the
product AB is defined. Order of AB is 1x 2,

3 o
=% 272 ]
-2 7

=[ 2EIFIRZHTHR(-D) 2R 043 X547 %7
(1) x3+5 %2 +2 2 (—2) -1 =0+5 x5+2 %7

_[6+6—18 0415449
~3410-4 042541

_[-2 54
LT

Properties of Matrix Multiplication

Some of the properties satisfied by matriz multiplication are stated below
without proof.
1. (Associative Law) : If A = [a;;] wen . B = [byj]asp and C=[cy] pug are
three matrices, then
(AB)C=A (BC).
1. (Distributive Law): IfA = [a; ) men. B = [byjlasp and C=[gy] nsp are
three matrices, then
AB+C) =AB+AC.
. HA=[a;j]menand B = [by]] up are two matrices, and ¥ is a complex
number, then
(kA ) B =AE) =k(AB).
4. EA=[aj]me 15 2 mx n matrix, then
InA=AL=A,
Where I, and I, are unit matrices of arder m and n respectively.

1
Example 3: I.etA=[ 2} amiB=[3 5 -]

Find AB and BA.

-
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Algrbra -1 Solution - Since A is 3»] matrix and B is a 1 x3 matrix, thersfore, AB is
defined apd its order is 3= 3.

If the number of columns of A is equal to the number of rows of B.

i
AH 2113 & —=F
-1
1x13 1 =5 1 = (=1
=|2 %3 2#%h 2w =21
(—1)%3 (—11%5 -1 %[0
3 5 =i
=16 10 —4
-1 =5 i

Alzo, BA is defined and ais 1= | matrx

1
BA= |1 & —EI[ El
—1

= [3+10+2] = [15]

This exampls illustrates that the maoix multplication s Dot
compuatative. Infact, it may happen that the product AB is defined bat
BA iz pot, as in the following case -

1 2 30
A= = dB=
[3 ﬂm ;2

W'e now point cut fwo more matrix properties which run counfer fe our
experience to number systems.

1. Itis possible that for two non-zero matrices and A and B, the product AB
I5 2 Zero matrix.

1. Tt is possible that for a non-zero matrix A and two anequal matrices B
and , we have, AB = AC. Thatis AR = AC, A 20 may oot mply
B = . In ather words, cancellation during multiplicatien does not hold.

Theze properties can be seen in the following exampls.

Evmple4:LetA=[0 ] p= [0 Hanac=[0 ]

Show that AB = 0., and AB = AC,

.



Solotion : We have Minprices -

I ST B

= 03x;

o 91 3- B2 3321- 2 8

= .,,:2

Therzfore, AB = AC. We see however, that A 20, ; and
B £ C. Thus, cancellation during multiplication does not hold.

Expoment of a Square Matrix
We now introduce the notion of the exponent of a square matris
To begin with, we define A for any square matrix and for any

positive mteger m.

Let A be a square matrix and m a positive integer, We define.

More formally, the two equations A'= 4 and A™''= A" A define
A™ recursively by defining it first for m = | and then m+] after it has
been defined for m. forall m = 1.

We also define A¥ =1, where A is a non—zero square matrix of order n.

The usual males of expenent’s namely

A"A"=A"" and (A™)" = A™ do hold for matrices if m and n are non-
nagative integers.

Example5 - 1..;:,=.=[_"=1 ﬂmm=x=-4x+?. Show that
fTA)= 04x ;. Use this result to find A°.

Solution :  First, we note that by TA) we mean A* —44 + 71, That is, we
replace x by A and multiply the constant term by I, the unit

matriz. Therefore,
MAI=A"-24 +71,

| B ] B L P

e i i R

-

=



I

ol i B e R
_[ 1847 12-1240
—4+4+0 1-847

[} 8] =0
Hence, A* - 44 - 7 I, from which we get

A' =APA=(4A-TL)A
=4A* - TLA =4(#A-TL)-TA [ -LA=A]
= 0A-2L

w 4" =A% A"=(4A - TL,) (DA - 2813)

= 36A% -63LA -112AT.+ 196 I, I, (Distributive Law)
= 36(4A-TL) - 63A-112A+106 L
= 1444 - 152 L-175 A+1986 I
= -11A -5 L

<} J-u ) g

-2 —93 _[55 0
31 62 Lo 5
—118 93

31 -118

Check Your Progress -1

Le=[3 3 o=} lszl,ﬁml matrix: % such that 5P+ 3Q = Wiz a
ull matri.

b

ra=[] T2 B=[f 1]amda+m)?= 4+ findaands.

3 HA=[E é]milh[? ] where ¥ = ~1 verlfy (4 + By = 4+ B7,

4 Letfir)=x!— Sx+6 Findf(4) if

z i 1
A=l z 1 3]-
1 - 0

5. Im=[[1jl g,smmm*-[; g

§. A and B are square matrices of the same order, explain why the
following may not hold good in general.
(@) (A+B)(A-B)=4'— B
W) (A+ By = A% 4 248 + B*
() (A—B) = A —24F + B

N



14 INVERTIBLE MATRICES

In this section, we restrict our attention to square matrices and formulate the
notion of multiplicative ioverse of a matrix.

Drefinition : An m«n mamix A is said to be imvertible or non-singular if
these exisis an n = n matmix of non singmlar if there exists an
n+ n matrix such that AB = BA =1,

The matriz B is called an imverse of A If thers exists no such
matrix B, then A iz called non-invertible or singalar.

Example 6 : Find whether A &5 iovertible or not where

o Al oafy
a b

Solntion : (2) We are asked whether we can find a matrix B = : i
that AB =1, . What we require is

PR R TR | AR
Thiz would mply that ¢ =0,d=1,2=1 and b= -1, so that mafrix
o=l

doses matisfy AB =1, Moreover, it also satisfies the equation
BA=1. This can be verified as follows :

ST Rt R

such

This implies that A is invaﬁ'n]emdﬂ=[é ‘}] i5 an imverse of A.

(1) Again we azk whether we can find a matrix B = [: g] such that
AB =1, What is required in this cass is

e b -0 Y

This would mply that #=1, b = 0 and the absurdity that 1=0. 50 Do
such B exists for this particular A. Hence, A is non invertible.

We mwll pot show that if 4 is mwertible, then B m the above
definition is unique.

-
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Theorem - If a matrix has an imverse, then inverse is unique.

Proof : Let B and C be ioverses of a matrix A. Then by definition.

AB=BA=1, {1}
and AC=CA=L - ()
How, B =EI, [property of identify matriz)

=B(AC) [fusing 2}
=(BA)C [asseciative law]
=LC [ using {1)]
=L, [property of identity matrix]

This means that we will always get the same inverse irmespective of the
methed emploved. We will write the inverse of A, if it exists, as A ', Thus

AAT+ATASL

Definition

Let A ={a,),., be 2 square matnx of dimension n=<n The cofactors mafrix of
A i5 defined to be the mams C = (3., Where A, denotes the cofactor of the
elament i, in the matrix A

1 =2 1
For example, if A= (3 1] 5).

£ =1 2
mEuA-_-_-[-lj"'|_'i g|=5
A-_;.u:—n"‘u i|=1-’|md
L M EE

EIJDIJ.EI]'_‘. .A.:| - 3'. A::= -2 .|!|.:| = —-II.. .|!L-:| = =11, A.j;_- =2 and .|!L-c| =i

5 14 -3
Thus, the cofactor matrix of A is given by C = IL 1 =z —?J.
Iy =& &

Definition

The adjoint of square matrx A = (a;;) ,., & defined to be the transpose of the
cofactor mammix of A It is denoted by o) A.




Byp g7 By Ay Ap Ay Magice: -1
For ezample A = (“:: By ':'"23]- then ad) A = (ﬁu Ay "1'!2)
@y Oy Oz Ay An dg

The following theerem will enable us to caloulate the mverse of a square
matriz. We state the theorem (without proof) for 3-3 mairces anly, but it is
trae for all squars matrices of order = n, where n =1

Theorem : If A is a square matrix of ardsr 3=3, then
Afad)A = (adjA) A=A,

In view of this theorem, we note that if |4] £ 0, then

TR W - [, T
A[mad]ﬂjl-limam-ﬁf’c =L.
Since, the inverse of a square matrix is unique, we see that if |4 20, then

A [ﬁ adj .d.jl acts s the imverse of A, That iz,

=t )

Alzo, a square mamix is invertble (non-singular) if and only if |4l 20

Example 7 - Find the inverss of A = "13 f'

Solotion :
Wehave 4, =(-1)'" W=4and A;s=(-1)'" 2I=12.
We know that |A| = gy, 4y + 312442 = (-3)(4) + 3(-2) =-21.

Since |A! 20 the mairix A& is invertible, Also,
A =(-17" |5|=-5 and A = (-1)"" |-3| = -3 Therefare,

- fdy Ani_r 4 =5
adja=| " =
! \ Ay Ayt (—3 -3/

T e I —5"|=|"—1,|'11 hiad
Raced A= 35 322)

Enmple : A= E]uﬂB=[; 3,

b B

verify that (AB) = B4



Alpebra - I Solution - Since A]|=—8+£0, .. Aismverdhble
Similarly, B/=20-10=10+0,.. B isako mverthle
Let Ay denote the cofactar of ay — the (i) element of A. Then
Ap=0Ar4As=-mdAxn=13
Similarly, if By i cofactor of (7} elemen of B, then
By =5,Bi=-2 By =5 ad B =4
“agias[ g Sfmaan=] 7]
> At =i g S [‘uuz —;‘:r;

wsi=gpenil s L

cesn-f} 3¢ 30518 ST B
We have
Cu=M.Cw=-1§ Cy=-25and Cr =16

Also, [C|=—80#0, .- Cis mvertible

cm [ 20 =15
m'mc_[—lﬁ 16

1 1
~1 ,
= :djl:=_Eu[_

= 0 =25] _ [—‘1,."4 5/16
||

16 16l | 15 —1/5])

e [ 2o Lm0 14
Hence, B74 _[—1;'5 1;5[1;2 ~3/8

[-1/4  5/16]_ ., :
_’ s -5 C TAB)

Example 9 : Fiﬂdﬂl&i]:vmnt'ﬂ:l

LAy X
— LA bt
= = L

and verify that A A =1,

-






